These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 14712716)

  • 1. Rho's role in transcription attenuation in the tna operon of E. coli.
    Gong F; Yanofsky C
    Methods Enzymol; 2003; 371():383-91. PubMed ID: 14712716
    [No Abstract]   [Full Text] [Related]  

  • 2. Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site.
    Konan KV; Yanofsky C
    J Bacteriol; 2000 Jul; 182(14):3981-8. PubMed ID: 10869076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA.
    Gong F; Yanofsky C
    J Biol Chem; 2001 Jan; 276(3):1974-83. PubMed ID: 11050101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a lac repressor roadblock to analyze the E. coli transcription elongation complex.
    King RA; Sen R; Weisberg RA
    Methods Enzymol; 2003; 371():207-18. PubMed ID: 14712702
    [No Abstract]   [Full Text] [Related]  

  • 5. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression.
    Cruz-Vera LR; Rajagopal S; Squires C; Yanofsky C
    Mol Cell; 2005 Aug; 19(3):333-43. PubMed ID: 16061180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon.
    Konan KV; Yanofsky C
    J Bacteriol; 1997 Mar; 179(5):1774-9. PubMed ID: 9045840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some novel transcription attenuation mechanisms used by bacteria.
    Yanofsky C; Konan KV; Sarsero JP
    Biochimie; 1996; 78(11-12):1017-24. PubMed ID: 9150880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional reconstruction of transcription termination factor rho: orientation of the N-terminal domain and visualization of an RNA-binding site.
    Yu X; Horiguchi T; Shigesada K; Egelman EH
    J Mol Biol; 2000 Jun; 299(5):1279-87. PubMed ID: 10873452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assay of transcription antitermination by proteins of the CspA family.
    Phadtare S; Severinov K; Inouye M
    Methods Enzymol; 2003; 371():460-71. PubMed ID: 14712721
    [No Abstract]   [Full Text] [Related]  

  • 10. Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression.
    Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2008 Jul; 190(14):4791-7. PubMed ID: 18424524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of the tnaC-tnaA spacer region and Rho factor in regulating expression of the tryptophanase operon of Proteus vulgaris.
    Kamath AV; Yanofsky C
    J Bacteriol; 1997 Mar; 179(5):1780-6. PubMed ID: 9045841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bismuth-dithiol inhibition of the Escherichia coli rho transcription termination factor.
    Brogan AP; Verghese J; Widger WR; Kohn H
    J Inorg Biochem; 2005 Mar; 99(3):841-51. PubMed ID: 15708806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U2552 methylation at the ribosomal A-site is a negative modulator of translational accuracy.
    Widerak M; Kern R; Malki A; Richarme G
    Gene; 2005 Feb; 347(1):109-14. PubMed ID: 15715963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies.
    Hillebrand A; Wurm R; Menzel A; Wagner R
    Biol Chem; 2005 Jun; 386(6):523-34. PubMed ID: 16006239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry. Completing the view of transcriptional regulation.
    von Hippel PH
    Science; 2004 Jul; 305(5682):350-2. PubMed ID: 15256661
    [No Abstract]   [Full Text] [Related]  

  • 17. DnaA as a transcription regulator.
    Messer W; Weigel C
    Methods Enzymol; 2003; 370():338-49. PubMed ID: 14712658
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of the opposing roles of H-NS and TraJ in transcriptional regulation of the F-plasmid tra operon.
    Will WR; Frost LS
    J Bacteriol; 2006 Jan; 188(2):507-14. PubMed ID: 16385041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Termination of transcription and its regulation in the tryptophan operon of E. coli.
    Platt T
    Cell; 1981 Apr; 24(1):10-23. PubMed ID: 7016334
    [No Abstract]   [Full Text] [Related]  

  • 20. Modeling feedback loops in the H-NS-mediated regulation of the Escherichia coli bgl operon.
    Radde N; Gebert J; Faigle U; Schrader R; Schnetz K
    J Theor Biol; 2008 Jan; 250(2):298-306. PubMed ID: 17981304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.