These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14712719)

  • 1. Analyzing transcription antitermination in lambdoid phages encoding toxin genes.
    Neely MN; Friedman DI
    Methods Enzymol; 2003; 371():418-38. PubMed ID: 14712719
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release.
    Neely MN; Friedman DI
    Mol Microbiol; 1998 Jun; 28(6):1255-67. PubMed ID: 9680214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression.
    Tyler JS; Mills MJ; Friedman DI
    J Bacteriol; 2004 Nov; 186(22):7670-9. PubMed ID: 15516581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the immunity region of lambdoid phages including Shiga-toxin-converting phages: molecular basis for cross immunity.
    Fattah KR; Mizutani S; Fattah FJ; Matsushiro A; Sugino Y
    Genes Genet Syst; 2000 Oct; 75(5):223-32. PubMed ID: 11245215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors.
    Neely MN; Friedman DI
    Mol Microbiol; 2000 Dec; 38(5):1074-85. PubMed ID: 11123680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A zinc-binding region in the beta' subunit of RNA polymerase is involved in antitermination of early transcription of phage HK022.
    Clerget M; Jin DJ; Weisberg RA
    J Mol Biol; 1995 May; 248(4):768-80. PubMed ID: 7752239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditionally lethal nusAts mutation of Escherichia coli reduces transcription termination but does not affect antitermination of bacteriophage lambda.
    Nakamura Y; Mizusawa S; Tsugawa A; Imai M
    Mol Gen Genet; 1986 Jul; 204(1):24-8. PubMed ID: 3018443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening RNA-binding libraries by transcriptional antitermination in bacteria.
    Peled-Zehavi H; Smith CA; Harada K; Frankel AD
    Methods Enzymol; 2000; 318():297-308. PubMed ID: 10889995
    [No Abstract]   [Full Text] [Related]  

  • 9. Antitermination of early transcription in phage HK022. Absence of a phage-encoded antitermination factor.
    Oberto J; Clerget M; Ditto M; Cam K; Weisberg RA
    J Mol Biol; 1993 Jan; 229(2):368-81. PubMed ID: 8429552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein.
    Doelling JH; Franklin NC
    Nucleic Acids Res; 1989 Jul; 17(14):5565-77. PubMed ID: 2527353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The operator-early promoter regions of Shiga-toxin bearing phage H-19B.
    Shi T; Friedman DI
    Mol Microbiol; 2001 Aug; 41(3):585-99. PubMed ID: 11532127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin.
    Neely MN; Friedman DI
    Gene; 1998 Nov; 223(1-2):105-13. PubMed ID: 9858702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites.
    Zhou Y; Shi T; Mozola MA; Olson ER; Henthorn K; Brown S; Gussin GN; Friedman DI
    J Bacteriol; 2006 Mar; 188(6):2222-32. PubMed ID: 16513752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The early promoters of bacteriophage HK022: contrasts and similarities to other lambdoid phages.
    Cam KM; Oberto J; Weisberg RA
    J Bacteriol; 1991 Jan; 173(2):734-40. PubMed ID: 1824767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal.
    Friedman DI; Olson ER; Johnson LL; Alessi D; Craven MG
    Genes Dev; 1990 Dec; 4(12A):2210-22. PubMed ID: 2148536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New mutations in the pRM promoter of bacteriophage lambda.
    Gussin GN; Brown S; Ferm J; Matz K
    Gene; 1987; 54(2-3):291-7. PubMed ID: 2958391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B.
    Cheeran A; Babu Suganthan R; Swapna G; Bandey I; Achary MS; Nagarajaram HA; Sen R
    J Mol Biol; 2005 Sep; 352(1):28-43. PubMed ID: 16061258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes.
    Henthorn KS; Friedman DI
    J Mol Biol; 1996 Mar; 257(1):9-20. PubMed ID: 8632463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents.
    Loś JM; Loś M; Wegrzyn G; Wegrzyn A
    Microb Pathog; 2009 Dec; 47(6):289-98. PubMed ID: 19761828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a qPCR-based method for quantifying Shiga toxin-encoding and other lambdoid bacteriophages.
    Rooks DJ; Yan Y; McDonald JE; Woodward MJ; McCarthy AJ; Allison HE
    Environ Microbiol; 2010 May; 12(5):1194-204. PubMed ID: 20148931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.