BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 14712912)

  • 21. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain.
    Arendt D; Tessmar-Raible K; Snyman H; Dorresteijn AW; Wittbrodt J
    Science; 2004 Oct; 306(5697):869-71. PubMed ID: 15514158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro.
    Mawad K; Van Gelder RN
    J Biol Rhythms; 2008 Oct; 23(5):387-91. PubMed ID: 18838602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circadian photoreception in vertebrates.
    Doyle S; Menaker M
    Cold Spring Harb Symp Quant Biol; 2007; 72():499-508. PubMed ID: 18419310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors.
    Davies WL; Hankins MW; Foster RG
    Photochem Photobiol Sci; 2010 Nov; 9(11):1444-57. PubMed ID: 20922256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).
    Temple SE; Ramsden SD; Haimberger TJ; Veldhoen KM; Veldhoen NJ; Carter NL; Roth WM; Hawryshyn CW
    J Exp Biol; 2008 Jul; 211(Pt 13):2134-43. PubMed ID: 18552303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of melanopsin expression.
    Hannibal J
    Chronobiol Int; 2006; 23(1-2):159-66. PubMed ID: 16687290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping retinal degeneration and loss-of-function in Rd-FTL mice.
    Greferath U; Goh HC; Chua PY; Astrand E; O'Brien EE; Fletcher EL; Murphy M
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5955-64. PubMed ID: 19661224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus).
    Jokela-Määttä M; Vartio A; Paulin L; Donner K
    J Exp Biol; 2009 Nov; 212(Pt 21):3415-21. PubMed ID: 19837882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain.
    Drivenes Ø; Søviknes AM; Ebbesson LO; Fjose A; Seo HC; Helvik JV
    J Comp Neurol; 2003 Jan; 456(1):84-93. PubMed ID: 12508316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of photic entrainment at low illuminances in rats with acute photoreceptor degeneration.
    Boudard DL; Mendoza J; Hicks D
    Eur J Neurosci; 2009 Oct; 30(8):1527-36. PubMed ID: 19821841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanopsin--shedding light on the elusive circadian photopigment.
    Brown RL; Robinson PR
    Chronobiol Int; 2004 Mar; 21(2):189-204. PubMed ID: 15332341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melanopsin changes in neonatal albino rat independent of rods and cones.
    Hannibal J; Georg B; Fahrenkrug J
    Neuroreport; 2007 Jan; 18(1):81-5. PubMed ID: 17259866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pinopsin is a chicken pineal photoreceptive molecule.
    Okano T; Yoshizawa T; Fukada Y
    Nature; 1994 Nov; 372(6501):94-7. PubMed ID: 7969427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoreceptors regulating circadian behavior: a mouse model.
    Foster RG; Argamaso S; Coleman S; Colwell CS; Lederman A; Provencio I
    J Biol Rhythms; 1993; 8 Suppl():S17-23. PubMed ID: 8274758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photopigments and circadian systems of vertebrates.
    Argamaso SM; Froehlich AC; McCall MA; Nevo E; Provencio I; Foster RG
    Biophys Chem; 1995; 56(1-2):3-11. PubMed ID: 7662867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-image-forming ocular photoreception in vertebrates.
    Fu Y; Liao HW; Do MT; Yau KW
    Curr Opin Neurobiol; 2005 Aug; 15(4):415-22. PubMed ID: 16023851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar).
    Philp AR; Garcia-Fernandez JM; Soni BG; Lucas RJ; Bellingham J; Foster RG
    J Exp Biol; 2000 Jun; 203(Pt 12):1925-36. PubMed ID: 10821749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.