BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14713023)

  • 1. The relationship between disinfection by-product formation and structural characteristics of humic substances in chloramination.
    Wu WW; Chadik PA; Delfino JJ
    Environ Toxicol Chem; 2003 Dec; 22(12):2845-52. PubMed ID: 14713023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time.
    Sakai H; Tokuhara S; Murakami M; Kosaka K; Oguma K; Takizawa S
    Water Res; 2016 Jan; 88():661-670. PubMed ID: 26575475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DBP levels in chlorinated drinking water: effect of humic substances.
    Nikolaou AD; Golfinopoulos SK; Lekkas TD; Kostopoulou MN
    Environ Monit Assess; 2004; 93(1-3):301-19. PubMed ID: 15074622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.
    Kim HC; Yu MJ
    J Hazard Mater; 2007 May; 143(1-2):486-93. PubMed ID: 17092645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.
    Shi Y; Ling W; Qiang Z
    Environ Technol; 2013; 34(9-12):1191-8. PubMed ID: 24191452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced formation of iodinated trihalomethanes in a mixed chlorine/chloramine system and attenuation by UV-activated process.
    Liu Z; Lin YL; Zhang TY; Hu CY; Zheng ZX; Tang YL; Cao TC; Xu B; Gao NY
    J Hazard Mater; 2022 May; 429():128370. PubMed ID: 35121291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.
    Hua G; Reckhow DA
    Water Res; 2007 Apr; 41(8):1667-78. PubMed ID: 17360020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide.
    Yang X; Shang C
    Environ Sci Technol; 2004 Oct; 38(19):4995-5001. PubMed ID: 15506191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.
    Kulkarni P; Chellam S
    Sci Total Environ; 2010 Sep; 408(19):4202-10. PubMed ID: 20580059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation.
    Hua LC; Lin JL; Syue MY; Huang C; Chen PC
    Sci Total Environ; 2018 Apr; 621():1467-1474. PubMed ID: 29054642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of DBPs and halogen-specific TOX in the presence of iopamidol and chlorinated oxidants.
    Ackerson NOB; Machek EJ; Killinger AH; Crafton EA; Kumkum P; Liberatore HK; Plewa MJ; Richardson SD; Ternes TA; Duirk SE
    Chemosphere; 2018 Jul; 202():349-357. PubMed ID: 29574388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter.
    Yang X; Guo W; Lee W
    Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation and transformation of natural organic matter accountable for disinfection byproduct formations by UV photolysis and UV/chlor(am)ine.
    Hirun-Utok C; Phattarapattamawong S
    Water Sci Technol; 2019 Mar; 79(5):929-937. PubMed ID: 31025972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of UV irradiation on the proportion of organic chloramines in total chlorine in subsequent chlorination.
    Zhang TY; Lin YL; Xu B; Xia SJ; Tian FX; Gao NY
    Chemosphere; 2016 Feb; 144():940-7. PubMed ID: 26432536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.