BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 14713077)

  • 21. An investigation of the possibilities of BNCT treatment planning with the Monte Carlo method.
    Konijnenberg MW; Mijnheer BJ; Raaijmakers CP; Stecher-Rasmussen F; Watkins PR
    Strahlenther Onkol; 1993 Jan; 169(1):25-8. PubMed ID: 8434336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT.
    Kota C; Maughan RL; Tattam D; Beynon TD
    Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fission converter and metal-oxide-semiconductor field effect transistor study of thermal neutron flux distribution in an epithermal neutron therapy beam.
    Kaplan GI; Rosenfeld AB; Allen BJ; Coderre JA; Liu HB
    Med Phys; 1999 Sep; 26(9):1989-94. PubMed ID: 10505889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain.
    Seppälä T; Auterinen I; Aschan C; Serén T; Benczik J; Snellman M; Huiskamp R; Ramadan UA; Kankaanranta L; Joensuu H; Savolainen S
    Med Phys; 2002 Nov; 29(11):2629-40. PubMed ID: 12462730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dose-rate scaling factor estimation of THOR BNCT test beam.
    Hsu FY; Tung CJ; Chen JC; Wang YL; Huang HC; Zamenhof RG
    Appl Radiat Isot; 2004 Nov; 61(5):881-5. PubMed ID: 15308162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.
    Riley KJ; Binns PJ; Harling OK; Albritton JR; Kiger WS; Rezaei A; Sköld K; Seppälä T; Savolainen S; Auterinen I; Marek M; Viererbl L; Nievaart VA; Moss RL
    Med Phys; 2008 Dec; 35(12):5419-25. PubMed ID: 19175101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calculation of dose components in head phantom for boron neutron capture therapy.
    da Silva AX; Crispim VR
    Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.
    Culbertson CN; Wangerin K; Ghandourah E; Jevremovic T
    Health Phys; 2005 Aug; 89(2):127-34. PubMed ID: 16010123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.
    Kotiluoto P; Auterinen I
    Appl Radiat Isot; 2004 Nov; 61(5):781-5. PubMed ID: 15308144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dosimetric measurements with a brain equivalent plastic walled ionization chamber in an epithermal neutron beam.
    Binns PJ; Riley KJ; Harling OK
    Radiat Prot Dosimetry; 2004; 110(1-4):687-92. PubMed ID: 15353731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A preliminary comparative study of two treatment planning systems developed for boron neutron capture therapy: MacNCTPlan and SERA.
    Wojnecki C; Green S
    Med Phys; 2002 Aug; 29(8):1710-5. PubMed ID: 12201417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy.
    Hsu FY; Tung CJ; Watt DE
    Radiat Prot Dosimetry; 2003; 104(2):121-6. PubMed ID: 12918789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media.
    Chetty IJ; Charland PM; Tyagi N; McShan DL; Fraass BA; Bielajew AF
    Med Phys; 2003 Apr; 30(4):563-73. PubMed ID: 12722808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-phantom characterisation studies at the Birmingham Accelerator-Generated epIthermal Neutron Source (BAGINS) BNCT facility.
    Culbertson CN; Green S; Mason AJ; Picton D; Baugh G; Hugtenburg RP; Yin Z; Scott MC; Nelson JM
    Appl Radiat Isot; 2004 Nov; 61(5):733-8. PubMed ID: 15308136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.
    Durisi E; Koivunoro H; Visca L; Borla O; Zanini A
    Radiat Prot Dosimetry; 2010 Mar; 138(3):213-22. PubMed ID: 19939825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.