BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14713114)

  • 1. Current paradigms in cellular oxygen sensing.
    Schumacker PT
    Adv Exp Med Biol; 2003; 543():57-71. PubMed ID: 14713114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O2 sensing, mitochondria and ROS signaling: The fog is lifting.
    Waypa GB; Smith KA; Schumacker PT
    Mol Aspects Med; 2016; 47-48():76-89. PubMed ID: 26776678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH.
    Wolin MS; Ahmad M; Gupte SA
    Am J Physiol Lung Cell Mol Physiol; 2005 Aug; 289(2):L159-73. PubMed ID: 16002998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox signaling during hypoxia in mammalian cells.
    Smith KA; Waypa GB; Schumacker PT
    Redox Biol; 2017 Oct; 13():228-234. PubMed ID: 28595160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of reactive oxygen species in cell death.
    Stamenkovic I
    Methods Cell Biol; 2001; 66():307-19. PubMed ID: 11396009
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidant signalling and vascular oxygen sensing. Role of H2O2 in responses of the bovine pulmonary artery to changes in PO2.
    Mohazzab KM; Wolin MS
    Adv Exp Med Biol; 2000; 475():249-58. PubMed ID: 10849665
    [No Abstract]   [Full Text] [Related]  

  • 8. Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Fuchs B; Sommer N; Dietrich A; Schermuly RT; Ghofrani HA; Grimminger F; Seeger W; Gudermann T; Weissmann N
    Respir Physiol Neurobiol; 2010 Dec; 174(3):282-91. PubMed ID: 20801235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms.
    Wolin MS; Burke-Wolin TM; Mohazzab-H KM
    Respir Physiol; 1999 Apr; 115(2):229-38. PubMed ID: 10385036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization.
    Simon MC
    Adv Exp Med Biol; 2006; 588():165-70. PubMed ID: 17089888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species generation at the plasma membrane for antibody control.
    Crane FL; Low H
    Autoimmun Rev; 2008 Jul; 7(7):518-22. PubMed ID: 18625439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic fluctuations in oxygen consumption comparing HeLa (cancer) and CHO (non-cancer) cells and response to external NAD(P)+/NAD(P)H.
    Orczyk J; Morré DM; Morré DJ
    Mol Cell Biochem; 2005 May; 273(1-2):161-7. PubMed ID: 16013451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):231-42. PubMed ID: 11229528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox signaling in acute oxygen sensing.
    Gao L; González-Rodríguez P; Ortega-Sáenz P; López-Barneo J
    Redox Biol; 2017 Aug; 12():908-915. PubMed ID: 28476010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotid body type I cells engage flavoprotein and Pin1 for oxygen sensing.
    Bernardini A; Wolf A; Brockmeier U; Riffkin H; Metzen E; Acker-Palmer A; Fandrey J; Acker H
    Am J Physiol Cell Physiol; 2020 Apr; 318(4):C719-C731. PubMed ID: 31967857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation.
    Glinn MA; Lee CP; Ernster L
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity.
    Piccoli C; Ria R; Scrima R; Cela O; D'Aprile A; Boffoli D; Falzetti F; Tabilio A; Capitanio N
    J Biol Chem; 2005 Jul; 280(28):26467-76. PubMed ID: 15883163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of redox changes in oxygen sensing.
    Weir EK; Archer SL
    Respir Physiol Neurobiol; 2010 Dec; 174(3):182-91. PubMed ID: 20801237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen activation and defence against oxygen toxicity in a psychrophilic Bacteroidaceae.
    Bentzen G; Larsen H
    Arch Microbiol; 1989; 151(2):95-100. PubMed ID: 2719528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.