These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14713120)

  • 1. Role of cerebral blood volume in acute mountain sickness.
    Kinsey CM; Roach R
    Adv Exp Med Biol; 2003; 543():151-9. PubMed ID: 14713120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension.
    Lawley JS; Alperin N; Bagci AM; Lee SH; Mullins PG; Oliver SJ; Macdonald JH
    Ann Neurol; 2014 Jun; 75(6):890-8. PubMed ID: 24788400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for cerebral edema, cerebral perfusion, and intracranial pressure elevations in acute mountain sickness.
    DiPasquale DM; Muza SR; Gunn AM; Li Z; Zhang Q; Harris NS; Strangman GE
    Brain Behav; 2016 Mar; 6(3):e00437. PubMed ID: 27099800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness.
    Manferdelli G; Marzorati M; Easton C; Porcelli S
    Exp Physiol; 2021 Jan; 106(1):76-85. PubMed ID: 32715540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early brain swelling in acute hypoxia.
    Dubowitz DJ; Dyer EA; Theilmann RJ; Buxton RB; Hopkins SR
    J Appl Physiol (1985); 2009 Jul; 107(1):244-52. PubMed ID: 19423837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral spinal fluid dynamics: effect of hypoxia and implications for high-altitude illness.
    Lawley JS; Levine BD; Williams MA; Malm J; Eklund A; Polaner DM; Subudhi AW; Hackett PH; Roach RC
    J Appl Physiol (1985); 2016 Jan; 120(2):251-62. PubMed ID: 26494441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High altitude cerebral edema and acute mountain sickness. A pathophysiology update.
    Hackett PH
    Adv Exp Med Biol; 1999; 474():23-45. PubMed ID: 10634991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral pressure-flow and metabolic responses to sustained hypoxia: effect of CO2.
    Yang SP; Bergö GW; Krasney E; Krasney JA
    J Appl Physiol (1985); 1994 Jan; 76(1):303-13. PubMed ID: 8175522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional cerebral blood flow during acute hypoxia in individuals susceptible to acute mountain sickness.
    Dyer EA; Hopkins SR; Perthen JE; Buxton RB; Dubowitz DJ
    Respir Physiol Neurobiol; 2008 Feb; 160(3):267-76. PubMed ID: 18088570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of cerebral blood flow regulation to acute mountain sickness.
    Otis SM; Rossman ME; Schneider PA; Rush MP; Ringelstein EB
    J Ultrasound Med; 1989 Mar; 8(3):143-8. PubMed ID: 2657093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [High altitude cerebral oedema].
    Dumont L; Lysakowski C; Kayser B
    Ann Fr Anesth Reanim; 2003 Apr; 22(4):320-4. PubMed ID: 12818324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologic response to moderate altitude exposure among infants and young children.
    Yaron M; Niermeyer S; Lindgren KN; Honigman B; Strain JD; Cairns CB
    High Alt Med Biol; 2003; 4(1):53-9. PubMed ID: 12713712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.
    Subudhi AW; Fan JL; Evero O; Bourdillon N; Kayser B; Julian CG; Lovering AT; Panerai RB; Roach RC
    J Appl Physiol (1985); 2014 Apr; 116(7):724-9. PubMed ID: 24371013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness.
    Hackett PH
    Wilderness Environ Med; 1999; 10(2):97-109. PubMed ID: 10442158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cerebral venous system and hypoxia.
    Wilson MH; Imray CH
    J Appl Physiol (1985); 2016 Jan; 120(2):244-50. PubMed ID: 26294747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute mountain sickness is not related to cerebral blood flow: a decompression chamber study.
    Baumgartner RW; Spyridopoulos I; Bärtsch P; Maggiorini M; Oelz O
    J Appl Physiol (1985); 1999 May; 86(5):1578-82. PubMed ID: 10233120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow velocity responses to hypoxia in subjects who are susceptible to high-altitude pulmonary oedema.
    Berré J; Vachiéry JL; Moraine JJ; Naeije R
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):260-3. PubMed ID: 10483794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cerebral effects of ascent to high altitudes.
    Wilson MH; Newman S; Imray CH
    Lancet Neurol; 2009 Feb; 8(2):175-91. PubMed ID: 19161909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated respiratory chemoreflex-mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness.
    Ogoh S; Washio T; Stacey BS; Tsukamoto H; Iannetelli A; Owens TS; Calverley TA; Fall L; Marley CJ; Saito S; Watanabe H; Hashimoto T; Ando S; Miyamoto T; Bailey DM
    Exp Physiol; 2021 Sep; 106(9):1922-1938. PubMed ID: 34318560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired cerebral autoregulation in acute mountain sickness: incidental yet adaptive?
    Bailey DM
    Stroke; 2010 Oct; 41(10):e571; author reply e572. PubMed ID: 20814008
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.