These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14713155)

  • 1. Acetylation and silylation of piperidine solubilized sporopollenin from pollen of Typha angustifolia L.
    Ahlers F; Lambert J; Wiermann R
    Z Naturforsch C J Biosci; 2003; 58(11-12):807-11. PubMed ID: 14713155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis.
    Bubert H; Lambert J; Steuernagel S; Ahlers F; Wiermann R
    Z Naturforsch C J Biosci; 2002; 57(11-12):1035-41. PubMed ID: 12562090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L.
    Ahlers F; Bubert H; Steuernagel S; Wiermann R
    Z Naturforsch C J Biosci; 2000; 55(3-4):129-36. PubMed ID: 10817199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile isolation and analysis of sporopollenin exine from bee pollen.
    Hegedüs K; Fehér C; Jalsovszky I; Kristóf Z; Rohonczy J; Vass E; Farkas A; Csizmadia T; Friedbacher G; Hantz P
    Sci Rep; 2021 May; 11(1):9952. PubMed ID: 33976296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular structure of plant sporopollenin.
    Li FS; Phyo P; Jacobowitz J; Hong M; Weng JK
    Nat Plants; 2019 Jan; 5(1):41-46. PubMed ID: 30559416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of diverse sporomorph-derived sporopollenins.
    Nierop KGJ; Versteegh GJM; Filley TR; de Leeuw JW
    Phytochemistry; 2019 Jun; 162():207-215. PubMed ID: 30952081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demystifying and unravelling the molecular structure of the biopolymer sporopollenin.
    Mikhael A; Jurcic K; Schneider C; Karr D; Fisher GL; Fridgen TD; Diego-Taboada A; Georghiou PE; Mackenzie G; Banoub J
    Rapid Commun Mass Spectrom; 2020 May; 34(10):e8740. PubMed ID: 32003875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenylpropanoid Derivatives Are Essential Components of Sporopollenin in Vascular Plants.
    Xue JS; Zhang B; Zhan H; Lv YL; Jia XL; Wang T; Yang NY; Lou YX; Zhang ZB; Hu WJ; Gui J; Cao J; Xu P; Zhou Y; Hu JF; Li L; Yang ZN
    Mol Plant; 2020 Nov; 13(11):1644-1653. PubMed ID: 32810599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-Specific Biodegradation of Sporopollenin-Based Microcapsules.
    Fan TF; Potroz MG; Tan EL; Ibrahim MS; Miyako E; Cho NJ
    Sci Rep; 2019 Jul; 9(1):9626. PubMed ID: 31270392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous determination of eleven major flavonoids in the pollen of Typha angustifolia by HPLC-PDA-MS.
    Tao W; Yang N; Duan JA; Wu D; Guo J; Tang Y; Qian D; Zhu Z
    Phytochem Anal; 2011; 22(5):455-61. PubMed ID: 22033915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release and anti-proliferative effect of imatinib mesylate loaded sporopollenin microcapsules extracted from pollens of Betula pendula.
    Sargin I; Akyuz L; Kaya M; Tan G; Ceter T; Yildirim K; Ertosun S; Aydin GH; Topal M
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):749-756. PubMed ID: 28716746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of nucleosides and nucleobases in the pollen of Typha angustifolia by UPLC-PDA-MS.
    Tao WW; Duan JA; Yang NY; Guo S; Zhu ZH; Tang YP; Qian DW
    Phytochem Anal; 2012; 23(4):373-8. PubMed ID: 22025417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two new cerebrosides from the pollen of Typha angustifolia.
    Tao WW; Yang NY; Liu L; Duan JA; Wu DK; Qian DW; Tang YP
    Fitoterapia; 2010 Apr; 81(3):196-9. PubMed ID: 19720118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and application of sporopollenin microcapsule supported palladium catalyst: Remarkably high turnover frequency and reusability in catalysis of biaryls.
    Baran T; Sargin I; Kaya M; Menteş A; Ceter T
    J Colloid Interface Sci; 2017 Jan; 486():194-203. PubMed ID: 27701017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of anti-nociceptive constituents from the pollen of
    Zeng G; Wu Z; Cao W; Wang Y; Deng X; Zhou Y
    Nat Prod Res; 2020 Apr; 34(7):1041-1045. PubMed ID: 30580603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spectrum-active relation research on Typha angustifolia before and after carbonized].
    Chen PD; Kong XP; Li F; Ding AW
    Zhong Yao Cai; 2012 Aug; 35(8):1221-4. PubMed ID: 23320351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determination and pro-angiogenic effect of polysaccharide from the pollen of Typha angustifolia L.
    Gao M; Lan J; Zha Y; Yao W; Bao B; Shan M; Zhang F; Zhou G; Yu S; Cheng F; Cao Y; Yan H; Zhang L; Chen P
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2028-2040. PubMed ID: 36209909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sporopollenin based materials as a versatile choice for the detoxification of environmental pollutants - A review.
    Yaacob SFFS; Jamil RZR; Suah FBM
    Int J Biol Macromol; 2022 May; 207():990-1004. PubMed ID: 35381287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Antioxidant properties of the pollen exine polymer matrix].
    Smirnova AV; Timoffev KN; Breĭgina MA; Matveeva NP; Ermakov IP
    Biofizika; 2012; 57(2):258-63. PubMed ID: 22594282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis on contents of flavonoids and polysaccharides in pollen of Typha angustifolia L. and its different processed products].
    Xi XR; Li SX
    Zhongguo Zhong Yao Za Zhi; 2000 Jan; 25(1):25-8. PubMed ID: 12205968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.