BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 14713356)

  • 1. Ampicillin micronization by supercritical assisted atomization.
    Reverchon E; Della Porta G; Spada A
    J Pharm Pharmacol; 2003 Nov; 55(11):1465-71. PubMed ID: 14713356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Griseofulvin micronization and dissolution rate improvement by supercritical assisted atomization.
    Reverchon E; Della Porta G; Spada A; Antonacci A
    J Pharm Pharmacol; 2004 Nov; 56(11):1379-87. PubMed ID: 15525444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical assisted atomization: a novel technology for microparticles preparation of an asthma-controlling drug.
    Della Porta G; De Vittori C; Reverchon E
    AAPS PharmSciTech; 2005 Oct; 6(3):E421-8. PubMed ID: 16354000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.
    Reverchon E; Adami R; Caputo G
    AAPS PharmSciTech; 2007 Dec; 8(4):E114. PubMed ID: 18181535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terbutaline microparticles suitable for aerosol delivery produced by supercritical assisted atomization.
    Reverchon E; Della Porta G
    Int J Pharm; 2003 Jun; 258(1-2):1-9. PubMed ID: 12753748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-polymer microparticles produced by supercritical assisted atomization.
    Reverchon E; Antonacci A
    Biotechnol Bioeng; 2007 Aug; 97(6):1626-37. PubMed ID: 17286274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micronization of lysozyme by supercritical assisted atomization.
    Adami R; Osséo LS; Reverchon E
    Biotechnol Bioeng; 2009 Dec; 104(6):1162-70. PubMed ID: 19603424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclodextrins micrometric powders obtained by supercritical fluid processing.
    Reverchon E; Antonacci A
    Biotechnol Bioeng; 2006 Jul; 94(4):753-61. PubMed ID: 16477660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticosteroid microparticles produced by supercritical-assisted atomization: process optimization, product characterization, and "in vitro" performance.
    Della Porta G; Ercolino SF; Parente L; Reverchon E
    J Pharm Sci; 2006 Sep; 95(9):2062-76. PubMed ID: 16850410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size controlled production of biodegradable microparticles with supercritical gases.
    Thies J; Müller BW
    Eur J Pharm Biopharm; 1998 Jan; 45(1):67-74. PubMed ID: 9689537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer.
    Du Z; Tang C; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2013 Sep; 454(1):174-82. PubMed ID: 23860361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
    Bakhbakhi Y; Charpentier PA; Rohani S
    Int J Pharm; 2006 Feb; 309(1-2):71-80. PubMed ID: 16412594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
    Bouchard A; Jovanović N; de Boer AH; Martín A; Jiskoot W; Crommelin DJ; Hofland GW; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Sep; 70(1):389-401. PubMed ID: 18534833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of process parameters in the ASES process on particle properties of budesonide for pulmonary delivery.
    Steckel H; Pichert L; Müller BW
    Eur J Pharm Biopharm; 2004 May; 57(3):507-12. PubMed ID: 15093600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of powders for pulmonary delivery using supercritical fluid technology.
    Rehman M; Shekunov BY; York P; Lechuga-Ballesteros D; Miller DP; Tan T; Colthorpe P
    Eur J Pharm Sci; 2004 May; 22(1):1-17. PubMed ID: 15113578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.