These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 14714782)

  • 1. Are conical segments useful for vocal-tract simulation?
    Strube HW
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3028-31. PubMed ID: 14714782
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of synthetic vowels based on a time-varying model of the vocal tract area function.
    Bunton K; Story BH
    J Acoust Soc Am; 2010 Apr; 127(4):EL146-52. PubMed ID: 20369982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models.
    Zhang Z; Kreiman J; Gerratt BR; Garellek M
    J Acoust Soc Am; 2013 Jan; 133(1):453-62. PubMed ID: 23297917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa.
    Chan RW; Titze IR; Titze MR
    J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of collision on the flow through in-vitro rigid models of the vocal folds.
    Deverge M; Pelorson X; Vilain C; Lagrée PY; Chentouf F; Willems J; Hirschberg A
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3354-62. PubMed ID: 14714815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Systematic measurement of vocal fold velocity during the closing phase of the phonatory cycle while changing F(0) and VPL].
    Schade G
    Laryngorhinootologie; 2005 Oct; 84(10):753-4. PubMed ID: 16231243
    [No Abstract]   [Full Text] [Related]  

  • 15. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-mass models of the vocal cords for natural sounding voice synthesis.
    Koizumi T; Taniguchi S; Hiromitsu S
    J Acoust Soc Am; 1987 Oct; 82(4):1179-92. PubMed ID: 2960707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of Various Open Quotients With Acoustic Property, Phonation Types, Fundamental Frequency, and Intensity.
    Yokonishi H; Imagawa H; Sakakibara K; Yamauchi A; Nito T; Yamasoba T; Tayama N
    J Voice; 2016 Mar; 30(2):145-57. PubMed ID: 25953586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated effects of cricothyroid and thyroarytenoid muscle activation on adult-male vocal fold vibration.
    Lowell SY; Story BH
    J Acoust Soc Am; 2006 Jul; 120(1):386-97. PubMed ID: 16875234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a three-dimensional reduced-order continuum model of phonation.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2016 Aug; 140(2):EL172. PubMed ID: 27586776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.