These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14714791)

  • 1. Thermal effects on acoustic streaming in standing waves.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3092-101. PubMed ID: 14714791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2003 Jan; 113(1):153-60. PubMed ID: 12558255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscous torque on spherical micro particles in two orthogonal acoustic standing wave fields.
    Lamprecht A; Schwarz T; Wang J; Dual J
    J Acoust Soc Am; 2015 Jul; 138(1):23-32. PubMed ID: 26233003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of pressure acoustics with thermoviscous boundary layers and streaming in elastic cavities.
    Joergensen JH; Bruus H
    J Acoust Soc Am; 2021 May; 149(5):3599. PubMed ID: 34241087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic microstreaming around a gas bubble.
    Doinikov AA; Bouakaz A
    J Acoust Soc Am; 2010 Feb; 127(2):703-9. PubMed ID: 20136192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-viscous damping of acoustic waves in narrow channels: A comparison of effects in air and water.
    Cotterill PA; Nigro D; Abrahams ID; Garcia-Neefjes E; Parnell WJ
    J Acoust Soc Am; 2018 Dec; 144(6):3421. PubMed ID: 30599677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study of the coupling between Rayleigh streaming and heat transfer at high acoustic level.
    Daru V; Weisman C; Baltean-Carlès D; Bailliet H
    J Acoust Soc Am; 2021 Dec; 150(6):4501. PubMed ID: 34972296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave.
    Thompson MW; Atchley AA; Maccarone MJ
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1839-49. PubMed ID: 15898629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cascade thermoacoustic engine.
    Gardner DL; Swift GW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1905-19. PubMed ID: 14587591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)].
    Yasui K; Izu N
    J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.
    Gubaidullin AA; Yakovenko AV
    J Acoust Soc Am; 2015 Jun; 137(6):3281-7. PubMed ID: 26093418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2017 Jun; 141(6):4418. PubMed ID: 28618831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powerful Acoustogeometric Streaming from Dynamic Geometric Nonlinearity.
    Zhang N; Horesh A; Manor O; Friend J
    Phys Rev Lett; 2021 Apr; 126(16):164502. PubMed ID: 33961464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.
    Ramadan IA; Bailliet H; Valière JC
    J Acoust Soc Am; 2018 Jan; 143(1):361. PubMed ID: 29390757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient unidirectional acoustic streaming in annular resonators.
    Amari M; Gusev V; Joly N
    Ultrasonics; 2004 Apr; 42(1-9):573-8. PubMed ID: 15047349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
    Abd El-Rahman AI; Abdel-Rahman E
    J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2018 Feb; 143(2):727. PubMed ID: 29495724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.