These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14714806)

  • 1. Influence of hearing sensitivity on mechano-electric transduction.
    Chertoff ME; Yi X; Lichtenhan JT
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3251-63. PubMed ID: 14714806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear.
    Choi CH; Chertoff ME; Yi X
    J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique.
    Bian L; Chertoff ME
    J Acoust Soc Am; 1998 Oct; 104(4):2261-71. PubMed ID: 10491690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the overload effect of sound impulses to the inner ear.
    Wagner H; Berndt H
    Arch Otorhinolaryngol; 1981; 232(2):179-85. PubMed ID: 7271587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing cochlear mechano-electric transduction in ears damaged with pure tones.
    Chertoff ME; Steele TC; Bian L
    J Acoust Soc Am; 1997 Jul; 102(1):441-50. PubMed ID: 9228806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss.
    Sly DJ; Campbell L; Uschakov A; Saief ST; Lam M; O'Leary SJ
    Otol Neurotol; 2016 Oct; 37(9):1223-30. PubMed ID: 27631825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing cochlear mechano-electric transduction using a nonlinear systems identification procedure.
    Chertoff ME; Steele T; Ator GA; Bian L
    J Acoust Soc Am; 1996 Dec; 100(6):3741-53. PubMed ID: 8969475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady state EP is not responsible for hearing loss in adult chickens following acoustic trauma.
    Trautwein PG; Chen L; Salvi RJ
    Hear Res; 1997 Aug; 110(1-2):266-70. PubMed ID: 9282909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hearing threshold shifts from repeated 6-h daily exposure to impact noise.
    Hamernik RP; Ahroon WA; Davis RI; Lei SF
    J Acoust Soc Am; 1994 Jan; 95(1):444-53. PubMed ID: 8120255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma.
    Patuzzi R
    Audiol Neurootol; 2002; 7(1):17-20. PubMed ID: 11914520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency acoustic modulations generated by the high-frequency portion of the cochlea, noninvasively recorded from the scalp of mice (Mus musculus).
    Henry KR
    J Comp Psychol; 2000 Mar; 114(1):22-35. PubMed ID: 10739309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiological mechanisms of hearing loss.
    Sohmer H
    J Basic Clin Physiol Pharmacol; 1997; 8(3):113-25. PubMed ID: 9429980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some new aspects on damages in the organ of Corti after pure tone exposure.
    Ritter J; Anniko M; Gerhardt HJ
    Arch Otorhinolaryngol; 1981; 232(2):187-97. PubMed ID: 7271588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window.
    Chertoff ME; Earl BR; Diaz FJ; Sorensen JL; Thomas ML; Kamerer AM; Peppi M
    J Acoust Soc Am; 2014 Sep; 136(3):1212. PubMed ID: 25190395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing cochlear pathophysiology in 4-aminopyridine and furosemide treated ears using a nonlinear systems identification technique.
    Bian L; Chertoff ME
    J Acoust Soc Am; 2001 Feb; 109(2):671-85. PubMed ID: 11248972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in forward masking after a temporary and a permanent noise-induced hearing loss.
    Duan ML; Canlon B
    Audiol Neurootol; 1996; 1(6):328-38. PubMed ID: 9390813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.