These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14714815)

  • 21. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mechanical model of vocal-fold collision with high spatial and temporal resolution.
    Gunter HE
    J Acoust Soc Am; 2003 Feb; 113(2):994-1000. PubMed ID: 12597193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are conical segments useful for vocal-tract simulation?
    Strube HW
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3028-31. PubMed ID: 14714782
    [No Abstract]   [Full Text] [Related]  

  • 26. Phonation threshold pressure in a physical model of the vocal fold mucosa.
    Titze IR; Schmidt SS; Titze MR
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrically conductive synthetic vocal fold replicas for voice production research.
    Syndergaard KL; Dushku S; Thomson SL
    J Acoust Soc Am; 2017 Jul; 142(1):EL63. PubMed ID: 28764459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of exit radii on intraglottal pressure distributions in the convergent glottis.
    Scherer RC; De Witt KJ; Kucinschi BR
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2267-9. PubMed ID: 11757915
    [No Abstract]   [Full Text] [Related]  

  • 31. [Non-linear model of glottic vibration. Potential clinical implications].
    Giovanni A; Ouaknine M; Garrel R; Ayache S; Robert D
    Rev Laryngol Otol Rhinol (Bord); 2002; 123(5):273-7. PubMed ID: 12741286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voice simulation with a body-cover model of the vocal folds.
    Story BH; Titze IR
    J Acoust Soc Am; 1995 Feb; 97(2):1249-60. PubMed ID: 7876446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Airflow measurements: theory and utility of findings.
    Miller CJ; Daniloff R
    J Voice; 1993 Mar; 7(1):38-46. PubMed ID: 8353618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerodynamic transfer of energy to the vocal folds.
    Thomson SL; Mongeau L; Frankel SH
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1689-700. PubMed ID: 16240827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.