These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14714815)

  • 41. Modeling of chaotic vibrations in symmetric vocal folds.
    Jiang JJ; Zhang Y; Stern J
    J Acoust Soc Am; 2001 Oct; 110(4):2120-8. PubMed ID: 11681389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequency and intensity effects upon temporal and aerodynamic aspects of vocal fold diadochokinesis.
    Leeper HA; Jones E
    Percept Mot Skills; 1991 Dec; 73(3 Pt 1):880-2. PubMed ID: 1792136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction.
    Kaburagi T; Tanabe Y
    J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Systematic measurement of vocal fold velocity during the closing phase of the phonatory cycle while changing F(0) and VPL].
    Schade G
    Laryngorhinootologie; 2005 Oct; 84(10):753-4. PubMed ID: 16231243
    [No Abstract]   [Full Text] [Related]  

  • 48. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE
    J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; ZaƱartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An in vitro setup to test the relevance and the accuracy of low-order vocal folds models.
    Ruty N; Pelorson X; Van Hirtum A; Lopez-Arteaga I; Hirschberg A
    J Acoust Soc Am; 2007 Jan; 121(1):479-90. PubMed ID: 17297802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vocal fold dynamics for frequency change.
    Hollien H
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comments on "A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds" [J. Acoust. Soc. Am. 130, 389-403 (2011)].
    Hirschberg A
    J Acoust Soc Am; 2013 Jul; 134(1):9-12. PubMed ID: 23862779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges.
    Kataoka K; Kitajima K
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.