These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14714815)

  • 61. Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation.
    Titze IR
    J Speech Lang Hear Res; 2006 Apr; 49(2):439-47. PubMed ID: 16671855
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterizing glottal jet turbulence.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2006 Feb; 119(2):1063-73. PubMed ID: 16521768
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Computational Study of Vocal Fold Dehydration During Phonation.
    Wu L; Zhang Z
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2938-2948. PubMed ID: 28391188
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Empirical Eigenfunctions and medial surface dynamics of a human vocal fold.
    Döllinger M; Tayama N; Berry DA
    Methods Inf Med; 2005; 44(3):384-91. PubMed ID: 16113761
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Theoretical consideration of the flow behavior in oscillating vocal fold.
    Deguchi S; Hyakutake T
    J Biomech; 2009 May; 42(7):824-9. PubMed ID: 19269641
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation.
    Deguchi S; Matsuzaki Y; Ikeda T
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):128-34. PubMed ID: 17388237
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 73. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pressure and velocity profiles in a static mechanical hemilarynx model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2002 Dec; 112(6):2996-3003. PubMed ID: 12509021
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recent measurements with a synthetic two-layer model of the vocal folds and extension of Titze's surface wave model to a body-cover model.
    Fulcher LP; Scherer RC
    J Acoust Soc Am; 2019 Dec; 146(6):EL502. PubMed ID: 31893721
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The physics of small-amplitude oscillation of the vocal folds.
    Titze IR
    J Acoust Soc Am; 1988 Apr; 83(4):1536-52. PubMed ID: 3372869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.