These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14714815)

  • 81. Coherent structures of the near field flow in a self-oscillating physical model of the vocal folds.
    Neubauer J; Zhang Z; Miraghaie R; Berry DA
    J Acoust Soc Am; 2007 Feb; 121(2):1102-18. PubMed ID: 17348532
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.
    Erath BD; Zañartu M; Peterson SD
    Biomech Model Mechanobiol; 2017 Jun; 16(3):947-960. PubMed ID: 28004225
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Modeling vocal fold motion with a hydrodynamic semicontinuum model.
    LaMar MD; Qi Y; Xin J
    J Acoust Soc Am; 2003 Jul; 114(1):455-64. PubMed ID: 12880056
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Measurements of the contact pressure in human vocal folds.
    Chen LJ; Mongeau L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():869-72. PubMed ID: 19964743
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Instantaneous orifice discharge coefficient of a physical, driven model of the human larynx.
    Park JB; Mongeau L
    J Acoust Soc Am; 2007 Jan; 121(1):442-55. PubMed ID: 17297799
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Aerodynamic assessment of vocal function using hand-held spirometers.
    Rau D; Beckett RL
    J Speech Hear Disord; 1984 May; 49(2):183-8. PubMed ID: 6716989
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Temperature distribution in expiratory speaking flow, and early detection of vocal fold pathology.
    Vargas JV; Gavidia-Ceballos L
    J Med Eng Technol; 1997; 21(5):190-8. PubMed ID: 9350600
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Vocal fold dynamics in a synthetic self-oscillating model: Contact pressure and dissipated-energy dose.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Jul; 150(1):478. PubMed ID: 34340498
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Examining the influence of epithelium layer modeling approaches on vocal fold kinematics and kinetics.
    Deng JJ; Peterson SD
    Biomech Model Mechanobiol; 2023 Apr; 22(2):479-493. PubMed ID: 36536195
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The shear modulus of the human vocal fold in a transverse direction.
    Goodyer E; Welham NV; Choi SH; Yamashita M; Dailey SH
    J Voice; 2009 Mar; 23(2):151-5. PubMed ID: 18215500
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The fascinating study of human vocal folds.
    Tsuji DH; Watanabe LM
    Braz J Otorhinolaryngol; 2014 Apr; 80(2):98. PubMed ID: 24830965
    [No Abstract]   [Full Text] [Related]  

  • 92. Influence of level difference due to vocal folds angular asymmetry on auto-oscillating replicas.
    Bouvet A; Tokuda I; Pelorson X; Van Hirtum A
    J Acoust Soc Am; 2020 Feb; 147(2):1136. PubMed ID: 32113292
    [TBL] [Abstract][Full Text] [Related]  

  • 93. [Mechanical properties of the vocal folds of fresh excised human larynxes].
    Komatsu K
    Nihon Jibiinkoka Gakkai Kaiho; 1985 Feb; 88(2):148-60. PubMed ID: 3998908
    [No Abstract]   [Full Text] [Related]  

  • 94. Rational approximations of viscous losses in vocal tract acoustic modeling.
    Wilhelms-Tricarico R; McGowan RS
    J Acoust Soc Am; 2004 Jun; 115(6):3195-201. PubMed ID: 15237843
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Nonlinear characteristics of single-reed instruments: quasistatic volume flow and reed opening measurements.
    Dalmont JP; Gilbert J; Ollivier S
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2253-62. PubMed ID: 14587622
    [TBL] [Abstract][Full Text] [Related]  

  • 96. ON THE GENERALISED FANT EQUATION.
    Howe MS; McGowan RS
    J Sound Vib; 2011 Jun; 330(13):3123-3140. PubMed ID: 21603054
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Assessment of vocal function by air-flow measurements.
    Kelman AW; Gordon MT; Simpson IC; Morton FM
    Folia Phoniatr (Basel); 1975; 27(4):250-62. PubMed ID: 1213614
    [No Abstract]   [Full Text] [Related]  

  • 98. Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties.
    Luizard P; Bailly L; Yousefi-Mashouf H; Girault R; Orgéas L; Henrich Bernardoni N
    Sci Rep; 2023 Dec; 13(1):22658. PubMed ID: 38114547
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A Deep Learning-Based Generalized Empirical Flow Model of Glottal Flow During Normal Phonation.
    Zhang Y; Jiang W; Sun L; Wang J; Zheng X; Xue Q
    J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35171218
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Phase-averaged and cycle-to-cycle analysis of jet dynamics in a scaled up vocal-fold model.
    Ringenberg H; Rogers D; Wei N; Krane M; Wei T
    J Fluid Mech; 2021 Jul; 918():. PubMed ID: 34737460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.