BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14714886)

  • 1. The glycosylation of airway mucins in cystic fibrosis and its relationship with lung infection by Pseudomonas aeruginosa.
    Roussel P; Lamblin G
    Adv Exp Med Biol; 2003; 535():17-32. PubMed ID: 14714886
    [No Abstract]   [Full Text] [Related]  

  • 2. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis.
    Venkatakrishnan V; Packer NH; Thaysen-Andersen M
    Expert Rev Respir Med; 2013 Oct; 7(5):553-76. PubMed ID: 24138697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease.
    Flynn JM; Niccum D; Dunitz JM; Hunter RC
    PLoS Pathog; 2016 Aug; 12(8):e1005846. PubMed ID: 27548479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bronchial mucins and infection in cystic fibrosis].
    Lamblin G; Ramphal R
    Pathol Biol (Paris); 1991 Jun; 39(6):592-7. PubMed ID: 1923590
    [No Abstract]   [Full Text] [Related]  

  • 5. Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis.
    Lamont IL; Konings AF; Reid DW
    Biometals; 2009 Feb; 22(1):53-60. PubMed ID: 19130260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron, Pseudomonas aeruginosa and cystic fibrosis.
    Reid DW; Kirov SM
    Microbiology (Reading); 2004 Mar; 150(Pt 3):516. PubMed ID: 14993297
    [No Abstract]   [Full Text] [Related]  

  • 7. Altered carbohydrate composition of salivary mucins from patients with cystic fibrosis and the adhesion of Pseudomonas aeruginosa.
    Carnoy C; Ramphal R; Scharfman A; Lo-Guidice JM; Houdret N; Klein A; Galabert C; Lamblin G; Roussel P
    Am J Respir Cell Mol Biol; 1993 Sep; 9(3):323-34. PubMed ID: 8398170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype.
    Venkatakrishnan V; Thaysen-Andersen M; Chen SC; Nevalainen H; Packer NH
    Glycobiology; 2015 Jan; 25(1):88-100. PubMed ID: 25190359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential binding of Pseudomonas aeruginosa to normal and cystic fibrosis tracheobronchial mucins.
    Devaraj N; Sheykhnazari M; Warren WS; Bhavanandan VP
    Glycobiology; 1994 Jun; 4(3):307-16. PubMed ID: 7949656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of subinhibitory concentrations of azithromycin on adherence of Pseudomonas aeruginosa to bronchial mucins collected from cystic fibrosis patients.
    Carfartan G; Gerardin P; Turck D; Husson MO
    J Antimicrob Chemother; 2004 Apr; 53(4):686-8. PubMed ID: 14998983
    [No Abstract]   [Full Text] [Related]  

  • 11. The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection.
    Davril M; Degroote S; Humbert P; Galabert C; Dumur V; Lafitte JJ; Lamblin G; Roussel P
    Glycobiology; 1999 Mar; 9(3):311-21. PubMed ID: 10024669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis.
    Sajjan U; Reisman J; Doig P; Irvin RT; Forstner G; Forstner J
    J Clin Invest; 1992 Feb; 89(2):657-65. PubMed ID: 1737853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early pulmonary inflammation and lung damage in children with cystic fibrosis.
    Schultz A; Stick S
    Respirology; 2015 May; 20(4):569-78. PubMed ID: 25823858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosylation of sputum mucins is altered in cystic fibrosis patients.
    Schulz BL; Sloane AJ; Robinson LJ; Prasad SS; Lindner RA; Robinson M; Bye PT; Nielson DW; Harry JL; Packer NH; Karlsson NG
    Glycobiology; 2007 Jul; 17(7):698-712. PubMed ID: 17392389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis.
    Xia B; Royall JA; Damera G; Sachdev GP; Cummings RD
    Glycobiology; 2005 Aug; 15(8):747-75. PubMed ID: 15994837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The diffusion of beta-lactam antibiotics through mixed gels of cystic fibrosis-derived mucin and Pseudomonas aeruginosa alginate.
    Bolister N; Basker M; Hodges NA; Marriott C
    J Antimicrob Chemother; 1991 Mar; 27(3):285-93. PubMed ID: 1903787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between glycoconjugates from human respiratory airways and Pseudomonas aeruginosa.
    Scharfman A; Van Brussel E; Houdret N; Lamblin G; Roussel P
    Am J Respir Crit Care Med; 1996 Oct; 154(4 Pt 2):S163-9. PubMed ID: 8876536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of mucin components by Pseudomonas aeruginosa.
    Ramphal R; Arora SK
    Glycoconj J; 2001 Sep; 18(9):709-13. PubMed ID: 12386456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reevaluating gel-forming mucins' roles in cystic fibrosis lung disease.
    Perez-Vilar J; Boucher RC
    Free Radic Biol Med; 2004 Nov; 37(10):1564-77. PubMed ID: 15477008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa Proteome under Hypoxic Stress Conditions Mimicking the Cystic Fibrosis Lung.
    Kamath KS; Krisp C; Chick J; Pascovici D; Gygi SP; Molloy MP
    J Proteome Res; 2017 Oct; 16(10):3917-3928. PubMed ID: 28832155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.