BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 14715005)

  • 1. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH.
    Funhoff AM; van Nostrum CF; Koning GA; Schuurmans-Nieuwenbroek NM; Crommelin DJ; Hennink WE
    Biomacromolecules; 2004; 5(1):32-9. PubMed ID: 14715005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors.
    Funhoff AM; van Nostrum CF; Lok MC; Kruijtzer JA; Crommelin DJ; Hennink WE
    J Control Release; 2005 Jan; 101(1-3):233-46. PubMed ID: 15588908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery.
    van de Wetering P; Moret EE; Schuurmans-Nieuwenbroek NM; van Steenbergen MJ; Hennink WE
    Bioconjug Chem; 1999; 10(4):589-97. PubMed ID: 10411456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery.
    Funhoff AM; van Nostrum CF; Lok MC; Fretz MM; Crommelin DJ; Hennink WE
    Bioconjug Chem; 2004; 15(6):1212-20. PubMed ID: 15546186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of cationic polymer-DNA complexes from the endosome: A theoretical investigation of the proton sponge hypothesis.
    Yang S; May S
    J Chem Phys; 2008 Nov; 129(18):185105. PubMed ID: 19045433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buffering properties of cationic polymethacrylates are not the only key to successful gene delivery.
    Dubruel P; Christiaens B; Rosseneu M; Vandekerckhove J; Grooten J; Goossens V; Schacht E
    Biomacromolecules; 2004; 5(2):379-88. PubMed ID: 15002997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(amido amine)s as gene delivery vectors: effects of quaternary nicotinamide moieties in the side chains.
    Mateos-Timoneda MA; Lok MC; Hennink WE; Feijen J; Engbersen JF
    ChemMedChem; 2008 Mar; 3(3):478-86. PubMed ID: 18061921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyplex formation between four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA in gene delivery.
    He E; Yue CY; Simeon F; Zhou LH; Too HP; Tam KC
    J Biomed Mater Res A; 2009 Dec; 91(3):708-18. PubMed ID: 19048636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of physicochemical characteristics of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes on cellular association and internalization.
    Zuidam NJ; Posthuma G; de Vries ET; Crommelin DJ; Hennink WE; Storm G
    J Drug Target; 2000; 8(1):51-66. PubMed ID: 10761645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s.
    Zhong Z; Song Y; Engbersen JF; Lok MC; Hennink WE; Feijen J
    J Control Release; 2005 Dec; 109(1-3):317-29. PubMed ID: 16081184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.
    Moore NM; Sheppard CL; Sakiyama-Elbert SE
    Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis.
    Akinc A; Thomas M; Klibanov AM; Langer R
    J Gene Med; 2005 May; 7(5):657-63. PubMed ID: 15543529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles.
    Moore NM; Sheppard CL; Barbour TR; Sakiyama-Elbert SE
    J Gene Med; 2008 Oct; 10(10):1134-49. PubMed ID: 18642401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of poly((N-trimethylammonium) ethyl methacrylate)-based gene delivery systems.
    Su J; Kim CJ; Ciftci K
    Gene Ther; 2002 Aug; 9(15):1031-6. PubMed ID: 12101434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmaceutical and biological properties of poly(amino acid)/DNA polyplexes.
    Lucas P; Milroy DA; Thomas BJ; Moss SH; Pouton CW
    J Drug Target; 1999; 7(2):143-56. PubMed ID: 10617299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of DNA spectral conformational changes and polymer buffering capacity in relation to transfection efficiency of DNA/polymer complexes.
    Cherng JY
    J Pharm Pharm Sci; 2009; 12(3):346-56. PubMed ID: 20067709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery.
    Tarwadi ; Jazayeri JA; Prankerd RJ; Pouton CW
    Bioconjug Chem; 2008 Apr; 19(4):940-50. PubMed ID: 18333604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.
    Zhong Z; Feijen J; Lok MC; Hennink WE; Christensen LV; Yockman JW; Kim YH; Kim SW
    Biomacromolecules; 2005; 6(6):3440-8. PubMed ID: 16283777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary complexes comprising polyphosphoramidate gene carriers with different types of charge groups improve transfection efficiency.
    Zhang PC; Wang J; Leong KW; Mao HQ
    Biomacromolecules; 2005; 6(1):54-60. PubMed ID: 15638504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency.
    Wang J; Gao SJ; Zhang PC; Wang S; Mao HQ; Leong KW
    Gene Ther; 2004 Jun; 11(12):1001-10. PubMed ID: 14985789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.