These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 14715034)

  • 1. Improving the activity of lipases from thermophilic organisms at mesophilic temperatures for biotechnology applications.
    Palomo JM; Segura RL; Mateo C; Fernandez-Lafuente R; Guisan JM
    Biomacromolecules; 2004; 5(1):249-54. PubMed ID: 14715034
    [No Abstract]   [Full Text] [Related]  

  • 2. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilizing enzymes: how to create more suitable biocatalysts.
    Bornscheuer UT
    Angew Chem Int Ed Engl; 2003 Jul; 42(29):3336-7. PubMed ID: 12888957
    [No Abstract]   [Full Text] [Related]  

  • 4. Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: enzyme characteristics and stability.
    Pahujani S; Kanwar SS; Chauhan G; Gupta R
    Bioresour Technol; 2008 May; 99(7):2566-70. PubMed ID: 17561391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin.
    Kohda J; Kawanishi H; Suehara K; Nakano Y; Yano T
    J Biosci Bioeng; 2006 Feb; 101(2):131-6. PubMed ID: 16569608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications.
    Unsworth LD; van der Oost J; Koutsopoulos S
    FEBS J; 2007 Aug; 274(16):4044-56. PubMed ID: 17683334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiesel synthesis via esterification of feedstock with high content of free fatty acids.
    Souza MS; Aguieiras EC; da Silva MA; Langone MA
    Appl Biochem Biotechnol; 2009 May; 154(1-3):74-88. PubMed ID: 19067243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H; Gao X; Philkana RS
    Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of intra- and extra-cellular thermophilic lipase/esterase production by Thermus sp.
    Domínguez A; Sanromán A; Fuciños P; Rúa ML; Pastrana L; Longo MA
    Biotechnol Lett; 2004 May; 26(9):705-8. PubMed ID: 15195968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipases: an overview.
    Casas-Godoy L; Duquesne S; Bordes F; Sandoval G; Marty A
    Methods Mol Biol; 2012; 861():3-30. PubMed ID: 22426709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological applications of halophilic lipases and thioesterases.
    Schreck SD; Grunden AM
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1011-21. PubMed ID: 24318008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of lipase pretreatment prior to lipase immobilization to prevent loss of activity.
    Lee DH; Kim JM; Shin HY; Kim SW
    J Microbiol Biotechnol; 2007 Apr; 17(4):650-4. PubMed ID: 18051278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esterification reactions catalyzed by lipases immobilized in organogels: effect of temperature and substrate diffusion.
    Zoumpanioti M; Parmaklis P; de María PD; Stamatis H; Sinisterra JV; Xenakis A
    Biotechnol Lett; 2008 Sep; 30(9):1627-31. PubMed ID: 18427927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arthrobacter sp. lipase immobilization for improvement in stability and enantioselectivity.
    Chaubey A; Parshad R; Koul S; Taneja SC; Qazi GN
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):598-606. PubMed ID: 16896604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial lipases: at the interface of aqueous and non-aqueous media. A review.
    Verma ML; Azmi W; Kanwar SS
    Acta Microbiol Immunol Hung; 2008 Sep; 55(3):265-94. PubMed ID: 18800594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold active microbial lipases: some hot issues and recent developments.
    Joseph B; Ramteke PW; Thomas G
    Biotechnol Adv; 2008; 26(5):457-70. PubMed ID: 18571355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield synthesis of wax esters catalysed by modified Candida rugosa lipase.
    Guncheva MH; Zhiryakova D
    Biotechnol Lett; 2008 Mar; 30(3):509-12. PubMed ID: 17957342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of thermostability and ester synthesis ability of free and immobilized lipases on cross linked silica gel.
    Kumari A; Mahapatra P; Kumar GV; Banerjee R
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):291-8. PubMed ID: 17882456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme stabilization via cross-linked enzyme aggregates.
    Gupta MN; Raghava S
    Methods Mol Biol; 2011; 679():133-45. PubMed ID: 20865393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium.
    Fernandez-Lorente G; Palomo JM; Cabrera Z; Fernandez-Lafuente R; Guisán JM
    Biotechnol Bioeng; 2007 Jun; 97(2):242-50. PubMed ID: 17054124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.