These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 14715075)
1. Determination of burn depth by polarization-sensitive optical coherence tomography. Srinivas SM; de Boer JF; Park H; Keikhanzadeh K; Huang HE; Zhang J; Jung WQ; Chen Z; Nelson JS J Biomed Opt; 2004; 9(1):207-12. PubMed ID: 14715075 [TBL] [Abstract][Full Text] [Related]
2. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Park BH; Saxer C; Srinivas SM; Nelson JS; de Boer JF J Biomed Opt; 2001 Oct; 6(4):474-9. PubMed ID: 11728208 [TBL] [Abstract][Full Text] [Related]
3. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. Kim KH; Pierce MC; Maguluri G; Park BH; Yoon SJ; Lydon M; Sheridan R; de Boer JF J Biomed Opt; 2012 Jun; 17(6):066012. PubMed ID: 22734768 [TBL] [Abstract][Full Text] [Related]
5. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. Götzinger E; Pircher M; Sticker M; Fercher AF; Hitzenberger CK J Biomed Opt; 2004; 9(1):94-102. PubMed ID: 14715060 [TBL] [Abstract][Full Text] [Related]
6. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Jiao S; Yu W; Stoica G; Wang LV Appl Opt; 2003 Sep; 42(25):5191-7. PubMed ID: 12962400 [TBL] [Abstract][Full Text] [Related]
7. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Guo S; Zhang J; Wang L; Nelson JS; Chen Z Opt Lett; 2004 Sep; 29(17):2025-7. PubMed ID: 15455768 [TBL] [Abstract][Full Text] [Related]
8. Measuring collagen injury depth for burn severity determination using polarization sensitive optical coherence tomography. Cannon TM; Uribe-Patarroyo N; Villiger M; Bouma BE Sci Rep; 2022 Jun; 12(1):10479. PubMed ID: 35729262 [TBL] [Abstract][Full Text] [Related]
9. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography. Liu B; Harman M; Giattina S; Stamper DL; Demakis C; Chilek M; Raby S; Brezinski ME Appl Opt; 2006 Jun; 45(18):4464-79. PubMed ID: 16778957 [TBL] [Abstract][Full Text] [Related]
10. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography. Islam MS; Oliveira MC; Wang Y; Henry FP; Randolph MA; Park BH; de Boer JF J Biomed Opt; 2012 May; 17(5):056012. PubMed ID: 22612135 [TBL] [Abstract][Full Text] [Related]
11. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study. Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791 [TBL] [Abstract][Full Text] [Related]
12. Topographical variations in the polarization sensitivity of articular cartilage as determined by polarization-sensitive optical coherence tomography and polarized light microscopy. Xie T; Xia Y; Guo S; Hoover P; Chen Z; Peavy GM J Biomed Opt; 2008; 13(5):054034. PubMed ID: 19021414 [TBL] [Abstract][Full Text] [Related]
13. Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Pierce MC; Sheridan RL; Hyle Park B; Cense B; de Boer JF Burns; 2004 Sep; 30(6):511-7. PubMed ID: 15302415 [TBL] [Abstract][Full Text] [Related]
14. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms. Liu B; Harman M; Brezinski ME J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555 [TBL] [Abstract][Full Text] [Related]
15. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography. Henry FP; Wang Y; Rodriguez CL; Randolph MA; Rust EA; Winograd JM; de Boer JF; Park BH J Biomed Opt; 2015 Apr; 20(4):046002. PubMed ID: 25858593 [TBL] [Abstract][Full Text] [Related]
16. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina. Pircher M; Götzinger E; Baumann B; Hitzenberger CK J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799 [TBL] [Abstract][Full Text] [Related]
17. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. Pierce MC; Strasswimmer J; Hyle Park B; Cense B; De Boer JF J Biomed Opt; 2004; 9(2):287-91. PubMed ID: 15065893 [TBL] [Abstract][Full Text] [Related]
18. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping. Youn JI; Vargas G; Wong BJ; Milner TE Phys Med Biol; 2005 May; 50(9):1937-50. PubMed ID: 15843728 [TBL] [Abstract][Full Text] [Related]
19. En face parametric imaging of tissue birefringence using polarization-sensitive optical coherence tomography. Chin L; Yang X; McLaughlin RA; Noble PB; Sampson DD J Biomed Opt; 2013 Jun; 18(6):066005. PubMed ID: 23733021 [TBL] [Abstract][Full Text] [Related]
20. Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-microm probe. Yamanari M; Lim Y; Makita S; Yasuno Y Opt Express; 2009 Jul; 17(15):12385-96. PubMed ID: 19654640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]