BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 14716856)

  • 1. [Effect of impeller vane number and angles on pump hemolysis].
    Qian K; Feng Z; Zeng P; Ru W; Yuan H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):605-7. PubMed ID: 14716856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streamlined design of impeller and its effect on pump haemolysis.
    Qian KX; Zeng P; Ru WM; Yuan HY
    J Med Eng Technol; 2002; 26(2):79-81. PubMed ID: 12102327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impeller design for a miniaturized centrifugal blood pump.
    Takano T; Schulte-Eistrup S; Yoshikawa M; Nakata K; Kawahito S; Maeda T; Nonaka K; Linneweber J; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosé Y
    Artif Organs; 2000 Oct; 24(10):821-5. PubMed ID: 11091172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience in reducing the hemolysis of an impeller assist heart.
    Qian KX
    ASAIO Trans; 1989; 35(1):46-53. PubMed ID: 2730808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolytic effect of the secondary vane incorporated into the back side of the impeller.
    Ohara Y; Murase M; Nosé Y
    Artif Organs; 1997 Jul; 21(7):694-9. PubMed ID: 9212941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow analysis for the secondary impeller of an IVAS heart pump.
    Nakamura S; Ding W; Smith WA; Golding LA
    ASAIO J; 1997; 43(5):M773-7. PubMed ID: 9360151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization evaluation of secondary flow in a centrifugal blood pump.
    Sakuma I; Fukui Y; Ohara Y; Makinouchi K; Takatani S; Nosé Y
    ASAIO J; 1993; 39(3):M433-7. PubMed ID: 8268573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PIV pictures of stream field predict haemolysis index of centrifugal pump with streamlined impeller.
    Qian KX; Feng ZG; Ru WM; Zeng P; Yuan HY
    J Med Eng Technol; 2007; 31(4):239-42. PubMed ID: 17566927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.
    Yamane T; Nishida M; Asztalos B; Tsutsui T; Jikuya T
    ASAIO J; 1997; 43(5):M635-8. PubMed ID: 9360122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The realization of a pulsatile implantable impeller pump with low hemolysis.
    Qian KX; Fei Q; Lin KD; Pi KD; Wang YP
    Artif Organs; 1989 Apr; 13(2):162-9. PubMed ID: 2705888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent studies of the centrifugal blood pump with a magnetically suspended impeller.
    Akamatsu T; Tsukiya T; Nishimura K; Park CH; Nakazeki T
    Artif Organs; 1995 Jul; 19(7):631-4. PubMed ID: 8572964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hemolysis test of the five kinds of impeller blood pumps in vitro].
    Li B; Lin C; Jiang Y; Wang J; Chen L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):479-82. PubMed ID: 12557528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.
    Qian KX
    Med Eng Phys; 1996 Jan; 18(1):57-66. PubMed ID: 8771040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pulsatile rotary pumps with low hemolysis].
    Qian K; Zeng P; Ru W; Yuan H; Feng Z; Li L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):391-3. PubMed ID: 11605497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Tayama E; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1997 Jul; 21(7):686-90. PubMed ID: 9212939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New centrifugal blood pump with dual impeller and double pivot bearing system: wear evaluation in bearing system, performance tests, and preliminary hemolysis tests.
    Bock E; Ribeiro A; Silva M; Antunes P; Fonseca J; Legendre D; Leme J; Arruda C; Biscegli J; Nicolosi D; Andrade A
    Artif Organs; 2008 Apr; 32(4):329-33. PubMed ID: 18370949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two stage axial flow pump. New approach to reduction of hemolysis.
    Wakisaka Y; Nakatani T; Anai H; Araki K; Taenaka Y; Tatsumi E; Masuzawa T; Baba Y; Eya K; Toda K
    ASAIO J; 1995; 41(3):M584-7. PubMed ID: 8573872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.
    Dame D
    Artif Organs; 1996 Jun; 20(6):613-7. PubMed ID: 8817965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Artif Organs; 2013 Sep; 37(9):778-85. PubMed ID: 23834855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.