BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14716856)

  • 41. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.
    Chung MK; Zhang N; Tansley GD; Woodard JC
    Artif Organs; 2004 Mar; 28(3):287-97. PubMed ID: 15046628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antithrombogenic properties of a monopivot magnetic suspension centrifugal pump for circulatory assist.
    Yamane T; Maruyama O; Nishida M; Kosaka R; Chida T; Kawamura H; Kuwana K; Ishihara K; Sankai Y; Matsuzaki M; Shigeta O; Enomoto Y; Tsutsui T
    Artif Organs; 2008 Jun; 32(6):484-9. PubMed ID: 18422795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new total heart design via implantable impeller pumps.
    Qian KX
    J Biomater Appl; 1990 Apr; 4(4):405-18. PubMed ID: 2345382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New concepts and new design of permanent maglev rotary artificial heart blood pumps.
    Qian KX; Zeng P; Ru WM; Yuan HY
    Med Eng Phys; 2006 May; 28(4):383-8. PubMed ID: 16183322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Bionic Nonsmooth Surface Vane on the Antiwear Characteristics of Double-Vane Pump.
    Ma L; Gu Y; Xia K; Mou J; Wu D; Yan M
    Appl Bionics Biomech; 2022; 2022():4442417. PubMed ID: 35506045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design considerations of volute geometry of a centrifugal blood pump.
    Chan WK; Wong YW; Hu W
    Artif Organs; 2005 Dec; 29(12):937-48. PubMed ID: 16305649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An implantable aortic valvo-pump for destination therapy.
    Qian KX
    Cardiovasc Eng; 2006 Mar; 6(1):40-2. PubMed ID: 16900420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The hemolytic characteristics of monopivot magnetic suspension blood pumps with washout holes.
    Maruyama O; Nishida M; Tsutsui T; Jikuya T; Yamane T
    Artif Organs; 2005 Apr; 29(4):345-8. PubMed ID: 15787632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump.
    Triep M; Brücker C; Schröder W; Siess T
    Artif Organs; 2006 May; 30(5):384-91. PubMed ID: 16683957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.
    Yamane T; Maruyama O; Nishida M; Kosaka R; Sugiyama D; Miyamoto Y; Kawamura H; Kato T; Sano T; Okubo T; Sankai Y; Shigeta O; Tsutsui T
    J Artif Organs; 2007; 10(2):71-6. PubMed ID: 17574508
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of pressure pulsation and energy characteristics of guide vane for axial flow pump based on Hilbert-Huang transform considering impeller-guide vane interaction.
    Lin Z; Yang F; Ding P; Teng J; Yuan Y; Jin Y
    Sci Prog; 2023; 106(3):368504231188627. PubMed ID: 37464794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.
    Chan WK; Wong YW; Ong W; Koh SY; Chong V
    Artif Organs; 2005 Mar; 29(3):250-8. PubMed ID: 15725228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.
    Watanabe N; Masuda T; Iida T; Kataoka H; Fujimoto T; Takatani S
    Artif Organs; 2005 Jan; 29(1):26-35. PubMed ID: 15644080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro evaluation of the TandemHeart pediatric centrifugal pump.
    Svitek RG; Smith DE; Magovern JA
    ASAIO J; 2007; 53(6):747-53. PubMed ID: 18043160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimal design of the hydrodynamic multi-arc bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level.
    Yasui K; Kosaka R; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Artif Organs; 2013 Sep; 37(9):768-77. PubMed ID: 23980526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The PediPump: a versatile, implantable pediatric ventricular assist device-update III.
    Weber S; Dudzinski DT; Gu L; Mielke N; Casas F; Noecker AM; Saeed D; Ootaki Y; Fukamachi K; Smith WA; Duncan BW
    ASAIO J; 2007; 53(6):730-3. PubMed ID: 18043157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.
    Mitamura Y; Kido K; Yano T; Sakota D; Yambe T; Sekine K; OKamoto E
    Artif Organs; 2007 Mar; 31(3):221-4. PubMed ID: 17343698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.