BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 14717030)

  • 1. Extracellular potentials of myelinated and demyelinated human motor nerve fibres.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2003 Dec; 43(8):497-501. PubMed ID: 14717030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular potentials of human motor myelinated nerve fibers in normal case and in amyotrophic lateral sclerosis.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2002; 42(7):443-8. PubMed ID: 12395619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitability properties of normal and demyelinated human motor nerve axons.
    Stephanova DI; Daskalova M
    Electromyogr Clin Neurophysiol; 2004; 44(3):147-52. PubMed ID: 15125054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination.
    Stephanova DI; Daskalova M
    Clin Neurophysiol; 2005 Oct; 116(10):2334-41. PubMed ID: 16122981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating focal demyelinating neuropathies: membrane property abnormalities.
    Stephanova DI; Alexandrov AS; Kossev A; Christova L
    Biol Cybern; 2007 Feb; 96(2):195-208. PubMed ID: 17072638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channels, currents and mechanisms of accommodative processes in simulated cases of systematic demyelinating neuropathies.
    Stephanova DI; Daskalova M; Alexandrov AS
    Brain Res; 2007 Sep; 1171():138-51. PubMed ID: 17706617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I.
    Stephanova DI; Daskalova M; Alexandrov AS
    Clin Neurophysiol; 2005 May; 116(5):1153-8. PubMed ID: 15826856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination.
    Stephanova DI; Daskalova M
    Clin Neurophysiol; 2005 May; 116(5):1159-66. PubMed ID: 15826857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating mild systematic and focal demyelinating neuropathies: membrane property abnormalities.
    Stephanova DI; Alexandrov AS
    J Integr Neurosci; 2006 Dec; 5(4):595-623. PubMed ID: 17245824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrotonic potentials of myelinated nerve fibers.
    Gydikov A; Kossev A; Trayanova N; Stephanova D
    Electromyogr Clin Neurophysiol; 1990 Jan; 30(1):47-51. PubMed ID: 2303004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular potential field of excited isolated frog muscle fibres immersed in a volume conductor.
    Gydikov A; Gerilovsky L; Radicheva N
    Gen Physiol Biophys; 1986 Apr; 5(2):125-34. PubMed ID: 3792817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations.
    Stephanova DI; Chobanova M
    Biol Cybern; 1997 Apr; 76(4):311-4. PubMed ID: 9195747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular potentials of a single myelinated nerve fiber in an unbounded volume conductor.
    Stephanova D; Trayanova N; Gydikov A; Kossev A
    Biol Cybern; 1989; 61(3):205-10. PubMed ID: 2765589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry.
    Clark JW; Greco EC; Harman TL
    CRC Crit Rev Bioeng; 1978 Nov; 3(1):1-22. PubMed ID: 310379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular potential field of unmyelinated active axons.
    Radicheva N; Trayanova N; Gydikov A; Gerilovsky L
    Acta Physiol Pharmacol Bulg; 1987; 13(2):22-9. PubMed ID: 3673598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength-duration properties of human myelinated motor and sensory axons in normal case and in amyotrophic lateral sclerosis.
    Daskalova M; Stephanova DI
    Acta Physiol Pharmacol Bulg; 2001; 26(1-2):11-4. PubMed ID: 11693388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The solving and simulation of cable equation under the stimulation of point electrical source].
    Jiang C; Wang H; Wang J; Zhang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):43-6. PubMed ID: 15762112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conduction in bundles of demyelinated nerve fibers: computer simulation.
    Reutskiy S; Rossoni E; Tirozzi B
    Biol Cybern; 2003 Dec; 89(6):439-48. PubMed ID: 14673655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigorous Green's function formulation for transmembrane potential induced along a 3-D infinite cylindrical cell.
    Livshitz LM; Einziger PD; Mizrahi J
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1491-503. PubMed ID: 12549731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations.
    Stephanova DI; Mileva K
    Biol Cybern; 2000 Aug; 83(2):161-7. PubMed ID: 10966055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.