These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 14717168)

  • 1. The effects of reaction-product formation on the reductive dissolution of MnO2 by Fe(II).
    Villinski JE; Saiers JE; Conklin MH
    Environ Sci Technol; 2003 Dec; 37(24):5589-96. PubMed ID: 14717168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II).
    Villinski JE; O'Day PA; Corley TL; Conklin MH
    Environ Sci Technol; 2001 Mar; 35(6):1157-63. PubMed ID: 11347928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioextraction (reductive dissolution) of iron from low-grade iron ores. Fundamental and applied studies.
    DiChristina TJ
    Ann N Y Acad Sci; 1994 May; 721():440-9. PubMed ID: 8010693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite.
    Manning BA; Fendorf SE; Bostick B; Suarez DL
    Environ Sci Technol; 2002 Mar; 36(5):976-81. PubMed ID: 11918029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe(II) reduction of pyrolusite (β-MnO
    Schaefer MV; Handler RM; Scherer MM
    Geochem Trans; 2017 Dec; 18(1):7. PubMed ID: 29209871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.
    Bligh MW; Maheshwari P; David Waite T
    Water Res; 2017 Nov; 124():341-352. PubMed ID: 28780358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustaining the efficiency of the Fe(0)/H
    Gheju M; Balcu I
    Chemosphere; 2019 Jan; 214():389-398. PubMed ID: 30268895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging.
    Senn AC; Hug SJ; Kaegi R; Hering JG; Voegelin A
    Water Res; 2018 Mar; 131():334-345. PubMed ID: 29306667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France).
    Casiot C; Morin G; Juillot F; Bruneel O; Personné JC; Leblanc M; Duquesne K; Bonnefoy V; Elbaz-Poulichet F
    Water Res; 2003 Jul; 37(12):2929-36. PubMed ID: 12767295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.
    Wu Y; Li W; Sparks DL
    J Colloid Interface Sci; 2015 Nov; 457():319-28. PubMed ID: 26196715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Wüstite (FeO) dissolution: implications for reductive dissolution of ferric oxides.
    Jang JH; Brantley SL
    Environ Sci Technol; 2009 Feb; 43(4):1086-90. PubMed ID: 19320162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.
    Liu C; Zachara JM; Foster NS; Strickland J
    Environ Sci Technol; 2007 Nov; 41(22):7730-5. PubMed ID: 18075081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of mine drainage using permeable reactive barrers: column experiments.
    Waybrant KR; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2002 Mar; 36(6):1349-56. PubMed ID: 11944692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.
    Lee W; Batchelor B
    Chemosphere; 2004 Sep; 56(10):999-1009. PubMed ID: 15268967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.
    Wu Y; Li W; Sparks DL
    Environ Sci Technol; 2015 Nov; 49(22):13360-8. PubMed ID: 26477604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Jan; 68(1-2):39-53. PubMed ID: 14698870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.