These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 14717179)

  • 1. Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment.
    Martinez RE; Smith DS; Pedersen K; Ferris FG
    Environ Sci Technol; 2003 Dec; 37(24):5671-7. PubMed ID: 14717179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium complexation by bacteriogenic iron oxides from a subterranean environment.
    Martinez RE; Pedersen K; Ferris FG
    J Colloid Interface Sci; 2004 Jul; 275(1):82-9. PubMed ID: 15158384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides.
    Katsoyiannis IA; Althoff HW; Bartel H; Jekel M
    Water Res; 2006 Nov; 40(19):3646-52. PubMed ID: 16908045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Resolved Distribution of Fe Species around Microbes at the Submicron Scale in Natural Bacteriogenic Iron Oxides.
    Suga H; Kikuchi S; Takeichi Y; Miyamoto C; Miyahara M; Mitsunobu S; Ohigashi T; Mase K; Ono K; Takahashi Y
    Microbes Environ; 2017 Sep; 32(3):283-287. PubMed ID: 28781344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of strontium onto bacteriogenic iron oxides.
    Langley S; Gault AG; Ibrahim A; Takahashi Y; Renaud R; Fortin D; Clark ID; Ferris FG
    Environ Sci Technol; 2009 Feb; 43(4):1008-14. PubMed ID: 19320150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China.
    Yin H; Tan N; Liu C; Wang J; Liang X; Qu M; Feng X; Qiu G; Tan W; Liu F
    Chemosphere; 2016 Oct; 161():181-189. PubMed ID: 27427775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.
    Dixit S; Hering JG
    Environ Sci Technol; 2003 Sep; 37(18):4182-9. PubMed ID: 14524451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrazine, isoproturon, mecoprop, 2,4-D, and bentazone adsorption onto iron oxides.
    Clausen L; Fabricius I
    J Environ Qual; 2001; 30(3):858-69. PubMed ID: 11401274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolved Organic Matter Sorption and Molecular Fractionation by Naturally Occurring Bacteriogenic Iron (Oxyhydr)oxides.
    Sowers TD; Holden KL; Coward EK; Sparks DL
    Environ Sci Technol; 2019 Apr; 53(8):4295-4304. PubMed ID: 30843682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of 1-hydroxy-2-naphthoic acid to goethite, lepidocrocite and ferrihydrite: batch experiments and infrared study.
    Hanna K; Carteret C
    Chemosphere; 2007 Dec; 70(2):178-86. PubMed ID: 17689586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton binding by hydrous ferric oxide and aluminum oxide surfaces interpreted using fully optimized continuous pKa spectra.
    Smith DS; Ferris FG
    Environ Sci Technol; 2001 Dec; 35(23):4637-42. PubMed ID: 11770764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay.
    Shaheen SM; Wang J; Swertz AC; Feng X; Bolan N; Rinklebe J
    Environ Pollut; 2019 May; 248():1059-1066. PubMed ID: 31091638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of biogenic iron oxides collected by the newly designed liquid culture method using diffusion chambers.
    Kikuchi S; Makita H; Takai K; Yamaguchi N; Takahashi Y
    Geobiology; 2014 Mar; 12(2):133-45. PubMed ID: 24382149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge.
    Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K
    Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific surface chemical interactions between hydrous ferric oxide and iron-reducing bacteria determined using pK(a) spectra.
    Smith DS; Ferris FG
    J Colloid Interface Sci; 2003 Oct; 266(1):60-7. PubMed ID: 12957582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.