BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14717199)

  • 1. Investigation of the inhibitory effect of silica on the degradation of 1,1,1-trichloroethane by granular iron.
    Kohn T; Kane SR; Fairbrother DH; Roberts AL
    Environ Sci Technol; 2003 Dec; 37(24):5806-12. PubMed ID: 14717199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of silica on the degradation of organohalides in granular iron columns.
    Kohn T; Roberts AL
    J Contam Hydrol; 2006 Feb; 83(1-2):70-88. PubMed ID: 16364495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH value and calcium hardness on the removal of 1,1,1-trichloroethane by immobilized nanoscale zero-valent iron on silica based supports.
    Chen S; Belver C; Li H; Ren LY; Liu YD; Bedia J; Gao GL; Guan J
    Chemosphere; 2018 Nov; 211():102-111. PubMed ID: 30071421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longevity of granular iron in groundwater treatment processes: corrosion product development.
    Kohn T; Livi KJ; Roberts AL; Vikesland PJ
    Environ Sci Technol; 2005 Apr; 39(8):2867-79. PubMed ID: 15884388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds.
    Klausen J; Vikesland PJ; Kohn T; Burris DR; Ball WP; Roberts AL
    Environ Sci Technol; 2003 Mar; 37(6):1208-18. PubMed ID: 12680677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.
    Sun X; Yan Y; Li J; Han W; Wang L
    J Hazard Mater; 2014 Feb; 266():26-33. PubMed ID: 24374562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron.
    Agrawal A; Ferguson WJ; Gardner BO; Christ JA; Bandstra JZ; Tratnyek PG
    Environ Sci Technol; 2002 Oct; 36(20):4326-33. PubMed ID: 12387405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane.
    Bransfield SJ; Cwiertny DM; Roberts AL; Fairbrother DH
    Environ Sci Technol; 2006 Mar; 40(5):1485-90. PubMed ID: 16568760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of SO on 1,1,1-trichloroethane degradation by Fe(0) in aqueous solution.
    Yu J; Liu W; Zeng A; Guan B; Xu X
    Ground Water; 2013 Mar; 51(2):286-92. PubMed ID: 22716098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some effects of aqueous silica on the corrosion of iron.
    Rushing JC; McNeill LS; Edwards M
    Water Res; 2003 Mar; 37(5):1080-90. PubMed ID: 12553983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH on Fenton and Fenton-like oxidation.
    Jung YS; Lim WT; Park JY; Kim YH
    Environ Technol; 2009 Feb; 30(2):183-90. PubMed ID: 19278159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction.
    Cwiertny DM; Bransfield SJ; Livi KJ; Fairbrother DH; Robertst AL
    Environ Sci Technol; 2006 Nov; 40(21):6837-43. PubMed ID: 17144319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiological characteristics in a zero-valent iron reactive barrier.
    Gu B; Watson DB; Wu L; Phillips DH; White DC; Zhou J
    Environ Monit Assess; 2002 Aug; 77(3):293-309. PubMed ID: 12194417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron.
    Oh YJ; Song H; Shin WS; Choi SJ; Kim YH
    Chemosphere; 2007 Jan; 66(5):858-65. PubMed ID: 16872667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media.
    Möller T; Sylvester P
    Water Res; 2008 Mar; 42(6-7):1760-6. PubMed ID: 18061234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.
    Danish M; Gu X; Lu S; Naqvi M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13298-307. PubMed ID: 27023817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.
    Velimirovic M; Carniato L; Simons Q; Schoups G; Seuntjens P; Bastiaens L
    J Hazard Mater; 2014 Apr; 270():18-26. PubMed ID: 24525160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.
    Wang J; Farrell J
    Environ Sci Technol; 2003 Sep; 37(17):3891-6. PubMed ID: 12967110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H
    Tang F; Xin J; Zheng X; Zheng T; Yuan X; Kolditz O
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23538-23548. PubMed ID: 28852962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.