These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14717199)

  • 21. Sorption of selenate on soils and pure phases: kinetic parameters and stabilisation.
    Loffredo N; Mounier S; Thiry Y; Coppin F
    J Environ Radioact; 2011 Sep; 102(9):843-51. PubMed ID: 21683486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron.
    Klausen J; Ranke J; Schwarzenbach RP
    Chemosphere; 2001 Aug; 44(4):511-7. PubMed ID: 11482637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions.
    Li H; Qiu YF; Wang XL; Yang J; Yu YJ; Chen YQ; Liu YD
    Chemosphere; 2017 Feb; 169():534-541. PubMed ID: 27898326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects.
    Melitas N; Chuffe-Moscoso O; Farrell J
    Environ Sci Technol; 2001 Oct; 35(19):3948-53. PubMed ID: 11642457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of arsenic from water by zero-valent iron.
    Bang S; Korfiatis GP; Meng X
    J Hazard Mater; 2005 May; 121(1-3):61-7. PubMed ID: 15885407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implications of aqueous silica sorption to iron hydroxide: mobilization of iron colloids and interference with sorption of arsenate and humic substances.
    Davis CC; Knocke WR; Edwards M
    Environ Sci Technol; 2001 Aug; 35(15):3158-62. PubMed ID: 11505993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reuse of waste silica as adsorbent for metal removal by iron oxide modification.
    Unob F; Wongsiri B; Phaeon N; Puanngam M; Shiowatana J
    J Hazard Mater; 2007 Apr; 142(1-2):455-62. PubMed ID: 17008002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composition and structure of iron oxidation surface layers produced in weak acidic solutions.
    Montes Atenas G; Mielczarski E; Mielczarski JA
    J Colloid Interface Sci; 2005 Sep; 289(1):157-70. PubMed ID: 15922350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of silica on iron oxidation and floc formation.
    Piispanen JK; Sallanko JT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(10):1092-101. PubMed ID: 21806453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.
    Su C; Puls RW
    Environ Sci Technol; 2004 May; 38(9):2715-20. PubMed ID: 15180070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.
    Borden RC
    J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.
    Tang CY; Shiang Fu Q; Gao D; Criddle CS; Leckie JO
    Water Res; 2010 Apr; 44(8):2654-62. PubMed ID: 20172580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemistry of silica scale mitigation for RO desalination with particular reference to remote operations.
    Milne NA; O'Reilly T; Sanciolo P; Ostarcevic E; Beighton M; Taylor K; Mullett M; Tarquin AJ; Gray SR
    Water Res; 2014 Nov; 65():107-33. PubMed ID: 25105586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption mechanisms of carbofuran on silica: structure, kinetics, and solubility influence.
    Mear AM; Le Saint J; Privat M
    Ecotoxicol Environ Saf; 1996 Nov; 35(2):163-73. PubMed ID: 8950539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency.
    Velimirovic M; Auffan M; Carniato L; Micić Batka V; Schmid D; Wagner S; Borschneck D; Proux O; von der Kammer F; Hofmann T
    Sci Total Environ; 2018 Mar; 618():1619-1627. PubMed ID: 29111242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depassivation of aged Fe0 by ferrous ions: implications to contaminant degradation.
    Liu T; Li X; Waite TD
    Environ Sci Technol; 2013 Dec; 47(23):13712-20. PubMed ID: 24195471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling silica sorption to iron hydroxide.
    Davis CC; Chen HW; Edwards M
    Environ Sci Technol; 2002 Feb; 36(4):582-7. PubMed ID: 11878370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.
    Xia X; Ling L; Zhang WX
    Chemosphere; 2017 Feb; 168():1597-1603. PubMed ID: 27939658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal.
    Butler EC; Hayes KF
    Environ Sci Technol; 2001 Oct; 35(19):3884-91. PubMed ID: 11642448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.