These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14717225)

  • 1. Difference spectra measurement of squid rhodopsin in the submillimeter wave region.
    Kishigami A; Itoh M; Nozokido T; Minamide H; Tsukahara Y; Mizuno K
    Photochem Photobiol Sci; 2003 Dec; 2(12):1303-6. PubMed ID: 14717225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rhodopsin system of the squid.
    HUBBARD R; ST GEORGE RC
    J Gen Physiol; 1958 Jan; 41(3):501-28. PubMed ID: 13491819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic Study of the LUMI Intermediate of Squid Rhodopsin.
    Murakami M; Kouyama T
    PLoS One; 2015; 10(5):e0126970. PubMed ID: 26024518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.
    Robinson KA; Ou WL; Guan X; Sugamori KS; Bandyopadhyay A; Ernst OP; Mitchell J
    J Neurochem; 2015 Dec; 135(6):1129-39. PubMed ID: 26375013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intermediate in the photolytic process of extracted squid rhodopsin.
    Ebina Y; Nagasawa N; Tsukahara Y
    Jpn J Physiol; 1975; 25(2):217-26. PubMed ID: 239266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.
    Sugihara M; Fujibuchi W; Suwa M
    J Phys Chem B; 2011 May; 115(19):6172-9. PubMed ID: 21510671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific photoisomerization of retinal in squid rhodopsin and metarhodopsin.
    Suzuki T; Makino M
    Biochim Biophys Acta; 1981 Jun; 636(1):27-31. PubMed ID: 7284342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin mobility, structure, and lipid-protein interaction in squid photoreceptor membranes.
    Ryba NJ; Hoon MA; Findlay JB; Saibil HR; Wilkinson JR; Heimburg T; Marsh D
    Biochemistry; 1993 Apr; 32(13):3298-305. PubMed ID: 8384876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
    Bandyopadhyay A; Van Eps N; Eger BT; Rauscher S; Yedidi RS; Moroni T; West GM; Robinson KA; Griffin PR; Mitchell J; Ernst OP
    J Mol Biol; 2018 Oct; 430(21):4102-4118. PubMed ID: 30120952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular dichroism of squid rhodopsin and its intermediates.
    Shichida Y; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1978 Dec; 504(3):413-30. PubMed ID: 718881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the resonance Raman spectrum of a metarhodopsin: implications for the color of visual pigments.
    Sulkes M; Lewis A; Lemley AT; Cookingham R
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4266-70. PubMed ID: 1069982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin.
    Smitienko OA; Mozgovaya MN; Shelaev IV; Gostev FE; Feldman TB; Nadtochenko VA; Sarkisov OM; Ostrovsky MA
    Biochemistry (Mosc); 2010 Jan; 75(1):25-35. PubMed ID: 20331421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature trapping of rhodopsin photointermediates.
    Sikora S; Little AS; Dewey TG
    Biochemistry; 1994 Apr; 33(15):4454-9. PubMed ID: 8161500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal-binding protein as a shuttle for retinal in the rhodopsin-retinochrome system of the squid visual cells.
    Terakita A; Hara R; Hara T
    Vision Res; 1989; 29(6):639-52. PubMed ID: 2626821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts.
    Masuda S; Morita EH; Tasumi M; Iwasa T; Tsuda M
    FEBS Lett; 1993 Feb; 317(3):223-7. PubMed ID: 8425608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.