These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14717294)

  • 21. Stress-induced birefringence and fabrication of in-fiber polarization devices by controlled femtosecond laser irradiations.
    Yuan L; Cheng B; Huang J; Liu J; Wang H; Lan X; Xiao H
    Opt Express; 2016 Jan; 24(2):1062-71. PubMed ID: 26832490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increase of photoinduced birefringence in a new type of anisotropic nanocomposite: azopolymer doped with ZnO nanoparticles.
    Nedelchev L; Nazarova D; Dragostinova V; Karashanova D
    Opt Lett; 2012 Jul; 37(13):2676-8. PubMed ID: 22743492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive torsion sensor with femtosecond laser-induced low birefringence single-mode fiber based Sagnac interferometer.
    Huang B; Shu X
    Opt Express; 2018 Feb; 26(4):4563-4571. PubMed ID: 29475305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast birefringence induced by a femtosecond laser filament in gases.
    Marceau C; Chen Y; Théberge F; Châteauneuf M; Dubois J; Chin SL
    Opt Lett; 2009 May; 34(9):1417-9. PubMed ID: 19412291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2011 Sep; 19(19):18294-301. PubMed ID: 21935196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress in femtosecond-laser-written waveguides in fused silica.
    Bhardwaj VR; Corkum PB; Rayner DM; Hnatovsky C; Simova E; Taylor RS
    Opt Lett; 2004 Jun; 29(12):1312-4. PubMed ID: 15233419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.
    Himei Y; Qiu J; Nakajima S; Sakamoto A; Hirao K
    Opt Lett; 2004 Dec; 29(23):2728-30. PubMed ID: 15605486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Femtosecond laser direct-write waveplates based on stress-induced birefringence.
    McMillen B; Athanasiou C; Bellouard Y
    Opt Express; 2016 Nov; 24(24):27239-27252. PubMed ID: 27906297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical operation by chromophores featuring 4,5-dicyanoimidazole embedded within poly(methyl methacrylate) matrices.
    Kulhánek J; Bures F; Wojciechowski A; Makowska-Janusik M; Gondek E; Kityk IV
    J Phys Chem A; 2010 Sep; 114(35):9440-6. PubMed ID: 20715799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incoherent-to-coherent conversion and square-law transmission based on photoinduced birefringence in bacteriorhodopsin films.
    Sánchez-de-la-Llave D; Fiddy MA
    Appl Opt; 1999 Feb; 38(5):815-21. PubMed ID: 18305680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversibility of photoinduced birefringence in ultralow-birefringence fibers.
    Meyer T; Nicati PA; Robert PA; Varelas D; Limberger HG; Salathé RP
    Opt Lett; 1996 Oct; 21(20):1661-3. PubMed ID: 19881759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permanent refractive-index modification in germanium-doped optical fibers by use of red light.
    Kruhlak RJ; Wong JS; Wardle DA; Harvey JD
    Opt Lett; 2005 Mar; 30(5):462-4. PubMed ID: 15789703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upconversion luminescence from aluminoborate glasses doped with Tb(3+), Eu(3+) and Dy(3+) under the excitation of 2.6-μm femtosecond laser pulses.
    Yuan MH; Fan HH; Dai QF; Lan S; Wan X; Tie SL
    Opt Express; 2015 Aug; 23(17):21909-18. PubMed ID: 26368167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailored surface birefringence by femtosecond laser assisted wet etching.
    Drevinskas R; Gecevičius M; Beresna M; Bellouard Y; Kazansky PG
    Opt Express; 2015 Jan; 23(2):1428-37. PubMed ID: 25835901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-photon-resonant photoinduced second-harmonic generation in Er(3+)-doped germano-aluminosilicate optical fibers pumped at 1.319 microm.
    Hickmann JM; Gouveia EA; Gouveia-Neto AS; Dini DC; Celaschi S
    Opt Lett; 1994 Nov; 19(21):1726-8. PubMed ID: 19855635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarization behavior of femtosecond laser written optical waveguides in Ti:Sapphire.
    Bai J; Cheng G; Long X; Wang Y; Zhao W; Chen G; Stoian R; Hui R
    Opt Express; 2012 Jul; 20(14):15035-44. PubMed ID: 22772199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-responsive properties of azobenzene small molecules in sol-gel hybrid TiO(2)/ormosil organic-inorganic matrices.
    Que W; Hu X; Xia XL; Zhao L
    Opt Express; 2007 Jan; 15(2):480-5. PubMed ID: 19532266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel.
    Cerkauskaite A; Drevinskas R; Rybaltovskii AO; Kazansky PG
    Opt Express; 2017 Apr; 25(7):8011-8021. PubMed ID: 28380923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond optical tweezers for in-situ control of two-photon fluorescence.
    Agate B; Brown C; Sibbett W; Dholakia K
    Opt Express; 2004 Jun; 12(13):3011-7. PubMed ID: 19483818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.