These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
587 related articles for article (PubMed ID: 14717591)
1. Effect of cofactor binding and loop conformation on side chain methyl dynamics in dihydrofolate reductase. Schnell JR; Dyson HJ; Wright PE Biochemistry; 2004 Jan; 43(2):374-83. PubMed ID: 14717591 [TBL] [Abstract][Full Text] [Related]
2. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Osborne MJ; Schnell J; Benkovic SJ; Dyson HJ; Wright PE Biochemistry; 2001 Aug; 40(33):9846-59. PubMed ID: 11502178 [TBL] [Abstract][Full Text] [Related]
3. Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes. Osborne MJ; Venkitakrishnan RP; Dyson HJ; Wright PE Protein Sci; 2003 Oct; 12(10):2230-8. PubMed ID: 14500880 [TBL] [Abstract][Full Text] [Related]
4. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle. Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999 [TBL] [Abstract][Full Text] [Related]
5. Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+. Cody V; Galitsky N; Rak D; Luft JR; Pangborn W; Queener SF Biochemistry; 1999 Apr; 38(14):4303-12. PubMed ID: 10194348 [TBL] [Abstract][Full Text] [Related]
6. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383 [TBL] [Abstract][Full Text] [Related]
7. Defining the binding site of homotetrameric R67 dihydrofolate reductase and correlating binding enthalpy with catalysis. Strader MB; Chopra S; Jackson M; Smiley RD; Stinnett L; Wu J; Howell EE Biochemistry; 2004 Jun; 43(23):7403-12. PubMed ID: 15182183 [TBL] [Abstract][Full Text] [Related]
8. Interligand Overhauser effects in type II dihydrofolate reductase. Li D; Levy LA; Gabel SA; Lebetkin MS; DeRose EF; Wall MJ; Howell EE; London RE Biochemistry; 2001 Apr; 40(14):4242-52. PubMed ID: 11284680 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Cameron CE; Benkovic SJ Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features. Epstein DM; Benkovic SJ; Wright PE Biochemistry; 1995 Sep; 34(35):11037-48. PubMed ID: 7669761 [TBL] [Abstract][Full Text] [Related]
11. Calorimetric studies of ligand binding in R67 dihydrofolate reductase. Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655 [TBL] [Abstract][Full Text] [Related]
12. Role of water in the catalytic cycle of E. coli dihydrofolate reductase. Shrimpton P; Allemann RK Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443 [TBL] [Abstract][Full Text] [Related]
13. Nuclear magnetic resonance study of the role of M42 in the solution dynamics of Escherichia coli dihydrofolate reductase. Mauldin RV; Lee AL Biochemistry; 2010 Mar; 49(8):1606-15. PubMed ID: 20073522 [TBL] [Abstract][Full Text] [Related]
14. Further studies on the role of water in R67 dihydrofolate reductase. Timson MJ; Duff MR; Dickey G; Saxton AM; Reyes-De-Corcuera JI; Howell EE Biochemistry; 2013 Mar; 52(12):2118-27. PubMed ID: 23458706 [TBL] [Abstract][Full Text] [Related]
15. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase. Miller GP; Benkovic SJ Biochemistry; 1998 May; 37(18):6327-35. PubMed ID: 9572847 [TBL] [Abstract][Full Text] [Related]
16. Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase. Shrimpton P; Mullaney A; Allemann RK Proteins; 2003 May; 51(2):216-23. PubMed ID: 12660990 [TBL] [Abstract][Full Text] [Related]
17. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Boehr DD; McElheny D; Dyson HJ; Wright PE Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics and solvent effects on substrate and cofactor binding in Escherichia coli chromosomal dihydrofolate reductase. Grubbs J; Rahmanian S; DeLuca A; Padmashali C; Jackson M; Duff MR; Howell EE Biochemistry; 2011 May; 50(18):3673-85. PubMed ID: 21462996 [TBL] [Abstract][Full Text] [Related]
19. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase. Hicks SN; Smiley RD; Hamilton JB; Howell EE Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480 [TBL] [Abstract][Full Text] [Related]
20. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH. Meiering EM; Wagner G J Mol Biol; 1995 Mar; 247(2):294-308. PubMed ID: 7707376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]