BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 14717599)

  • 41. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of an aminoglycoside 6'-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold.
    Wybenga-Groot LE; Draker K; Wright GD; Berghuis AM
    Structure; 1999 May; 7(5):497-507. PubMed ID: 10378269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189.
    Hege T; Baumann U
    J Mol Biol; 2001 Nov; 314(2):187-93. PubMed ID: 11718553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutational analysis of active-site residues of the enterococcal D-ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-ala-D-Ala ligase and D-ala-D-Ala carboxypeptidase VanY.
    Lessard IA; Walsh CT
    Chem Biol; 1999 Mar; 6(3):177-87. PubMed ID: 10074467
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic mechanism of inulinase from Arthrobacter sp. S37.
    Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI
    Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the catalytic residues of AroA (Enolpyruvylshikimate 3-phosphate synthase) using partitioning analysis.
    Mizyed S; Wright JE; Byczynski B; Berti PJ
    Biochemistry; 2003 Jun; 42(23):6986-95. PubMed ID: 12795593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of replacing glutamic residues upon the biological activity and stability of the circular enterocin AS-48.
    Sánchez-Hidalgo M; Martínez-Bueno M; Fernández-Escamilla AM; Valdivia E; Serrano L; Maqueda M
    J Antimicrob Chemother; 2008 Jun; 61(6):1256-65. PubMed ID: 18385141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N (EC 3.4.11.2): insights into its mechanism of action.
    Luciani N; Marie-Claire C; Ruffet E; Beaumont A; Roques BP; Fournié-Zaluski MC
    Biochemistry; 1998 Jan; 37(2):686-92. PubMed ID: 9425092
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roles of active site residues in Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase.
    Naught LE; Regni C; Beamer LJ; Tipton PA
    Biochemistry; 2003 Aug; 42(33):9946-51. PubMed ID: 12924943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural analysis of a novel substrate-free form of the aminoglycoside 6'-N-acetyltransferase from Enterococcus faecium.
    Jang H; Kwon S; Jeong CS; Lee CW; Hwang J; Jung KH; Lee JH; Park HH
    Acta Crystallogr F Struct Biol Commun; 2020 Aug; 76(Pt 8):364-371. PubMed ID: 32744248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. D-amino acid N-acetyltransferase of Saccharomyces cerevisiae: a close homologue of histone acetyltransferase Hpa2p acting exclusively on free D-amino acids.
    Yow GY; Uo T; Yoshimura T; Esaki N
    Arch Microbiol; 2004 Nov; 182(5):396-403. PubMed ID: 15375647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of 3-hydroxy-3-methylglutaryl-coenzyme A lyase arginine-41 as a catalytic residue: use of acetyldithio-coenzyme A to monitor product enolization.
    Tuinstra RL; Wang CZ; Mitchell GA; Miziorko HM
    Biochemistry; 2004 May; 43(18):5287-95. PubMed ID: 15122894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis.
    Nes WD; Jayasimha P; Zhou W; Kanagasabai R; Jin C; Jaradat TT; Shaw RW; Bujnicki JM
    Biochemistry; 2004 Jan; 43(2):569-76. PubMed ID: 14717613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The conserved methionine residue of the metzincins: a site-directed mutagenesis study.
    Hege T; Baumann U
    J Mol Biol; 2001 Nov; 314(2):181-6. PubMed ID: 11718552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the amino acid invariants in the active site of MurG as evaluated by site-directed mutagenesis.
    Crouvoisier M; Auger G; Blanot D; Mengin-Lecreulx D
    Biochimie; 2007 Dec; 89(12):1498-508. PubMed ID: 17692452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol.
    Johnson CM; Roderick SL; Cook PF
    Arch Biochem Biophys; 2005 Jan; 433(1):85-95. PubMed ID: 15581568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The kinetic mechanism of AAC3-IV aminoglycoside acetyltransferase from Escherichia coli.
    Magalhaes ML; Blanchard JS
    Biochemistry; 2005 Dec; 44(49):16275-83. PubMed ID: 16331988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis.
    Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF
    Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Epidemiologic, Phenotypic, and Structural Characterization of Aminoglycoside-Resistance Gene
    Plattner M; Gysin M; Haldimann K; Becker K; Hobbie SN
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32854436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.