These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 14718348)
1. Determination of short-term exposure with a direct reading photoionization detector. Poirot P; Subra I; Gérardin F; Baudin V; Grossmann S; Héry M Ann Occup Hyg; 2004 Jan; 48(1):75-84. PubMed ID: 14718348 [TBL] [Abstract][Full Text] [Related]
2. Field evaluation of a portable photoionization detector for assessing exposure to solvent mixtures. Coy JD; Bigelow PL; Buchan RM; Tessari JD; Parnell JO AIHAJ; 2000; 61(2):268-74. PubMed ID: 10782199 [TBL] [Abstract][Full Text] [Related]
3. [Sensing characteristics of a real-time monitor using a photoionization detector on organic solvent vapors]. Hori H; Ishematsu S; Fueta Y; Hinoue M; Ishidao T J UOEH; 2012 Dec; 34(4):363-8. PubMed ID: 23270260 [TBL] [Abstract][Full Text] [Related]
4. Additivity of detector responses of a portable direct-reading 10.2 eV photoionization detector and a flame ionization gas chromatograph for atmospheres of multicomponent organics: use of PID/FID ratios. Lee IN; Que Hee SS; Clark CS Am Ind Hyg Assoc J; 1987 May; 48(5):437-41. PubMed ID: 3591664 [TBL] [Abstract][Full Text] [Related]
5. [Occupational exposure to gases emitted in mild and stainless steel welding]. Matczak W; Gromiec J Med Pr; 2001; 52(6):423-36. PubMed ID: 11928672 [TBL] [Abstract][Full Text] [Related]
6. Assessment of exposure to ethanol vapors released during use of Alcohol-Based Hand Rubs by healthcare workers. Hautemanière A; Cunat L; Ahmed-Lecheheb D; Hajjard F; Gerardin F; Morele Y; Hartemann P J Infect Public Health; 2013 Feb; 6(1):16-26. PubMed ID: 23290089 [TBL] [Abstract][Full Text] [Related]
7. [Use of biological monitoring for evaluating occupational exposure in the paint and varnish industry]. Kostrzewski P Med Pr; 1995; 46(6):549-55. PubMed ID: 8851002 [TBL] [Abstract][Full Text] [Related]
8. [The improvement of determination method of carbon disulfide in workplace air with gas chromatography]. Xiao QF; Qin WH; Lu YY; Yu SF Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Jun; 30(6):471-2. PubMed ID: 22931783 [TBL] [Abstract][Full Text] [Related]
9. Laboratory and field validation of the GC-NPD method for the measurement of formaldehyde in the workplace. Jeong JY; Paik NW J Occup Environ Hyg; 2005 Apr; 2(4):244-50. PubMed ID: 15788386 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous determination of polar and non-polar solvents in air using a two-phase desorption from charcoal. Langvardt PW; Melcher RG Am Ind Hyg Assoc J; 1979 Nov; 40(11):1006-12. PubMed ID: 532777 [TBL] [Abstract][Full Text] [Related]
11. Toward a microfabricated preconcentrator-focuser for a wearable micro-scale gas chromatograph. Bryant-Genevier J; Zellers ET J Chromatogr A; 2015 Nov; 1422():299-309. PubMed ID: 26530144 [TBL] [Abstract][Full Text] [Related]
12. [Comparison of standard methods for determination of pseudocumene in urine using gas chromatography with the headspace technique and a new method using a headspace automatic sampler]. Kostrzewski P; Wiaderna-Brycht A; Czerski B Med Pr; 1996; 47(6):605-13. PubMed ID: 9091763 [TBL] [Abstract][Full Text] [Related]
13. Hand-held photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects. Smith PA; Lepage CJ; Harrer KL; Brochu PJ J Occup Environ Hyg; 2007 Oct; 4(10):729-38. PubMed ID: 17668359 [TBL] [Abstract][Full Text] [Related]
15. Effect of calibration and environmental condition on the performance of direct-reading organic vapor monitors. Coffey C; LeBouf R; Lee L; Slaven J; Martin S J Occup Environ Hyg; 2012; 9(11):670-80. PubMed ID: 23016630 [TBL] [Abstract][Full Text] [Related]
16. A sampling and analytical method for vinylidene chloride in air. Foerst D Am Ind Hyg Assoc J; 1979 Oct; 40(10):888-93. PubMed ID: 525615 [TBL] [Abstract][Full Text] [Related]
17. [The personal exposure of workers in the manufacture of xylenes--in Burgas (the Neftokhim firm)]. Panova N; Bonev N Probl Khig; 1995; 20():185-91. PubMed ID: 8524743 [TBL] [Abstract][Full Text] [Related]
18. A laboratory evaluation of the accuracy and precision of the photovac snapshot portable gas chromatograph and the Dräger Chip Measurement System monitor for benzene in air measurements. Verma DK; Saunders GA; Cheng WK Appl Occup Environ Hyg; 2001 Aug; 16(8):832-40. PubMed ID: 11504361 [TBL] [Abstract][Full Text] [Related]
19. Laboratory and field validation of a JXC charcoal sampling and analytical method for monitoring short-term exposures to ethylene oxide. Puskar MA; Nowak JL; Hecker LH Am Ind Hyg Assoc J; 1988 May; 49(5):237-43. PubMed ID: 3400587 [TBL] [Abstract][Full Text] [Related]
20. An assessment of the exposure of technicians working in a chemical laboratory for aromatic hydrocarbons at Neftochim, Burgas. Panev T; Pavlova M; Tzoneva M Int Arch Occup Environ Health; 1998 Sep; 71 Suppl():S60-3. PubMed ID: 9827883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]