BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14718366)

  • 1. Assessment of renal functional phenotype in mice lacking gp91PHOX subunit of NAD(P)H oxidase.
    Haque MZ; Majid DS
    Hypertension; 2004 Feb; 43(2):335-40. PubMed ID: 14718366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced renal responses to nitric oxide synthase inhibition in mice lacking the gene for gp91phox subunit of NAD(P)H oxidase.
    Haque MZ; Majid DS
    Am J Physiol Renal Physiol; 2008 Sep; 295(3):F758-64. PubMed ID: 18596078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol feeding does not alter renal hemodynamic response to acetylcholine and angiotensin II in rabbits.
    Carroll JF; Mizelle HL; Cockrell K; Reckelhoff JF; Clower BR; Granger JP
    Am J Physiol; 1997 Mar; 272(3 Pt 2):R940-7. PubMed ID: 9087658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice.
    Wang HD; Xu S; Johns DG; Du Y; Quinn MT; Cayatte AJ; Cohen RA
    Circ Res; 2001 May; 88(9):947-53. PubMed ID: 11349005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gp91phox-containing NAD(P)H oxidase mediates attenuation of nitric oxide-dependent control of myocardial oxygen consumption by ANG II.
    Kinugawa S; Zhang J; Messina E; Walsh E; Huang H; Kaminski PM; Wolin MS; Hintze TH
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H862-7. PubMed ID: 15778277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced superoxide activity modulates renal function in NO-deficient hypertensive rats.
    Kopkan L; Majid DS
    Hypertension; 2006 Mar; 47(3):568-72. PubMed ID: 16401762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of extracellular superoxide dismutase in the mouse angiotensin slow pressor response.
    Welch WJ; Chabrashvili T; Solis G; Chen Y; Gill PS; Aslam S; Wang X; Ji H; Sandberg K; Jose P; Wilcox CS
    Hypertension; 2006 Nov; 48(5):934-41. PubMed ID: 17015770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial nitric oxide synthase-deficient mice exhibit increased susceptibility to endotoxin-induced acute renal failure.
    Wang W; Mitra A; Poole B; Falk S; Lucia MS; Tayal S; Schrier R
    Am J Physiol Renal Physiol; 2004 Nov; 287(5):F1044-8. PubMed ID: 15475535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal function in the AT1A receptor knockout mouse during normal and volume-expanded conditions.
    Cervenka L; Mitchell KD; Oliverio MI; Coffman TM; Navar LG
    Kidney Int; 1999 Nov; 56(5):1855-62. PubMed ID: 10571794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia.
    Stokes KY; Russell JM; Jennings MH; Alexander JS; Granger DN
    Free Radic Biol Med; 2007 Jul; 43(1):22-30. PubMed ID: 17561090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TP receptors regulate renal hemodynamics during angiotensin II slow pressor response.
    Kawada N; Dennehy K; Solis G; Modlinger P; Hamel R; Kawada JT; Aslam S; Moriyama T; Imai E; Welch WJ; Wilcox CS
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F753-9. PubMed ID: 15213069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High salt intake delayed angiotensin II-induced hypertension in mice with a genetic variant of NADPH oxidase.
    Haque MZ; Majid DS
    Am J Hypertens; 2011 Jan; 24(1):114-8. PubMed ID: 20706193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that nitric oxide inhibits vascular inflammation and superoxide production via a p47phox-dependent mechanism in mice.
    Harrison CB; Drummond GR; Sobey CG; Selemidis S
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):429-34. PubMed ID: 19843095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of superoxide anion and nitric oxide on blood pressure and renal hemodynamics in transgenic rats with inducible malignant hypertension.
    Patterson ME; Mouton CR; Mullins JJ; Mitchell KD
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F754-9. PubMed ID: 15900020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiotensin II and renal prostaglandin release in the dog. Interactions in controlling renal blood flow and glomerular filtration rate.
    Bugge JF; Stokke ES
    Acta Physiol Scand; 1994 Apr; 150(4):431-40. PubMed ID: 8036911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide and its interaction with nitric oxide modulates renal function in prehypertensive Ren-2 transgenic rats.
    Kopkan L; Husková Z; Vanourková Z; Thumová M; Skaroupková P; Cervenka L; Majid DS
    J Hypertens; 2007 Nov; 25(11):2257-65. PubMed ID: 17921820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxanthine plus xanthine oxidase causes profound natriuresis without affecting renal blood flow autoregulation.
    Racasan S; Turkstra E; Joles JA; Koomans HA; Braam B
    Kidney Int; 2003 Jul; 64(1):226-31. PubMed ID: 12787413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs.
    Majid DS; Nishiyama A; Jackson KE; Castillo A
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F412-9. PubMed ID: 15467005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II-induced natriuresis is attenuated in knockout mice lacking the receptors for tumor necrosis factor-α.
    Majid DSA; Castillo A
    Physiol Rep; 2021 Aug; 9(15):e14942. PubMed ID: 34337896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction.
    Thieme M; Sivritas SH; Mergia E; Potthoff SA; Yang G; Hering L; Grave K; Hoch H; Rump LC; Stegbauer J
    Am J Physiol Renal Physiol; 2017 Mar; 312(3):F474-F481. PubMed ID: 28052870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.