These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 1471980)

  • 1. The steady-state rate equation for the general modifier mechanism of Botts and Morales when the quasi-equilibrium assumption for the binding of the modifier is made.
    Varón R; García-Moreno M; Garrido C; García-Cánovas F
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):1072-3. PubMed ID: 1471980
    [No Abstract]   [Full Text] [Related]  

  • 2. A generalized theoretical treatment of the kinetics of an enzyme-catalysed reaction in the presence of an unstable irreversible modifier.
    Topham CM
    J Theor Biol; 1990 Aug; 145(4):547-72. PubMed ID: 2246902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding.
    Jia C; Liu XF; Qian MP; Jiang DQ; Zhang YP
    J Theor Biol; 2012 Mar; 296():13-20. PubMed ID: 22100501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In defence of the general validity of the Cha method of deriving rate equations. The importance of explicit recognition of the thermodynamic box in enzyme kinetics.
    Topham CM; Brocklehurst K
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):261-5. PubMed ID: 1540141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphic representation of Botts-Morales equation for enzyme-substrate-modifier system.
    Katsumata M
    J Theor Biol; 1972 Aug; 36(2):327-38. PubMed ID: 4627474
    [No Abstract]   [Full Text] [Related]  

  • 6. Theory of allosteric effects in serine proteases.
    Di Cera E; Hopfner KP; Dang QD
    Biophys J; 1996 Jan; 70(1):174-81. PubMed ID: 8770196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcomputer tools for steady-state enzyme kinetics.
    Myers D; Palmer G
    Comput Appl Biosci; 1985; 1(2):105-10. PubMed ID: 3880330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quasi-equilibrium assumption for Bi-Bi ordered bisubstrate enzymatic reaction. How to discriminate the mechanism correctly.
    Vrzheshch PV
    Biochemistry (Mosc); 2010 Nov; 75(11):1374-82. PubMed ID: 21314605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The general modifier ("allosteric") unireactant enzyme mechanism: redundant conditions for reduction of the steady state velocity equation to one that is first degree in substrate and effector.
    Segel IH; Martin RL
    J Theor Biol; 1988 Dec; 135(4):445-53. PubMed ID: 3256732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the interpretation of tyrosinase inhibition kinetics.
    Sun W; Wendt M; Klebe G; Röhm KH
    J Enzyme Inhib Med Chem; 2014 Feb; 29(1):92-9. PubMed ID: 23323989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control analysis of metabolic systems involving quasi-equilibrium reactions.
    Kholodenko BN; Schuster S; Garcia J; Westerhoff HV; Cascante M
    Biochim Biophys Acta; 1998 Mar; 1379(3):337-52. PubMed ID: 9545597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of the general modifier mechanism of Botts and Morales involving a suicide substrate.
    Varón R; García-Cánovas F; García-Moreno M; Valero E; Molina-Alarcón M; García-Meseguers MJ; Vidal de Labra JA; Garrido-del Sol C
    J Theor Biol; 2002 Oct; 218(3):355-74. PubMed ID: 12381436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-steady-state laws in enzyme kinetics.
    Li B; Shen Y; Li B
    J Phys Chem A; 2008 Mar; 112(11):2311-21. PubMed ID: 18303867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the principle of microscopic reversibility to the steady-state rate equation for a general mechanism for an enzyme reaction with substrate and modifier.
    Selwyn MJ
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):897-8. PubMed ID: 8240305
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of periodic input on the quasi-steady state assumptions for enzyme-catalysed reactions.
    Stoleriu I; Davidson FA; Liu JL
    J Math Biol; 2005 Feb; 50(2):115-32. PubMed ID: 15322823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.
    Ishikawa H; Maeda T; Hikita H; Miyatake K
    Biochem J; 1988 Apr; 251(1):175-81. PubMed ID: 3390151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-equilibrium assumption in enzyme kinetics. Necessary and sufficient conditions and accuracy of its application for single-substrate reactions.
    Vrzheshch PV
    Biochemistry (Mosc); 2008 Oct; 73(10):1114-20. PubMed ID: 18991557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General equation of steady-state enzyme kinetics using net rate constants and its applicaiton to the kinetic analysis of catalase reaction.
    Yomo T; Yamano T; Yamamoto K; Urabe I
    J Theor Biol; 1997 Oct; 188(3):301-12. PubMed ID: 9344734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of apparent co-operativity of the steady-state of a simple non-equilibrium random substrate-modifier mechanism [proceedings].
    Whitehead EP; Egmond MR
    Biochem Soc Trans; 1977; 5(3):789-90. PubMed ID: 902915
    [No Abstract]   [Full Text] [Related]  

  • 20. Michaelis-Menten kinetics at high enzyme concentrations.
    Tzafriri AR
    Bull Math Biol; 2003 Nov; 65(6):1111-29. PubMed ID: 14607291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.