BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14719803)

  • 1. Potent bivalent inhibition of human tryptase-beta by a synthetic inhibitor.
    Selwood T; Elrod KC; Schechter NM
    Biol Chem; 2003 Dec; 384(12):1605-11. PubMed ID: 14719803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease.
    Selwood T; Smolensky H; McCaslin DR; Schechter NM
    Biochemistry; 2005 Mar; 44(9):3580-90. PubMed ID: 15736967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure.
    Selwood T; McCaslin DR; Schechter NM
    Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soybean Bowman-Birk protease inhibitor is a highly effective inhibitor of human mast cell chymase.
    Ware JH; Wan XS; Rubin H; Schechter NM; Kennedy AR
    Arch Biochem Biophys; 1997 Aug; 344(1):133-8. PubMed ID: 9244390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of human beta-tryptase by Bowman-Birk inhibitor derived peptides: creation of a new tri-functional inhibitor.
    Scarpi D; McBride JD; Leatherbarrow RJ
    Bioorg Med Chem; 2004 Dec; 12(23):6045-52. PubMed ID: 15519150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin.
    Erba F; Fiorucci L; Sommerhoff CP; Coletta M; Ascoli F
    Biol Chem; 2000 Nov; 381(11):1117-22. PubMed ID: 11154069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bivalent inhibition of human beta-tryptase.
    Schaschke N; Matschiner G; Zettl F; Marquardt U; Bergner A; Bode W; Sommerhoff CP; Moroder L
    Chem Biol; 2001 Apr; 8(4):313-27. PubMed ID: 11325588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of factor Xa inhibition by recombinant tick anticoagulant peptide: both active site and exosite interactions are required for a slow- and tight-binding inhibition mechanism.
    Rezaie AR
    Biochemistry; 2004 Mar; 43(12):3368-75. PubMed ID: 15035608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore.
    Pereira PJ; Bergner A; Macedo-Ribeiro S; Huber R; Matschiner G; Fritz H; Sommerhoff CP; Bode W
    Nature; 1998 Mar; 392(6673):306-11. PubMed ID: 9521329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structures of free and leupeptin-complexed human alphaI-tryptase mutants: indication for an alpha-->beta-tryptase transition.
    Rohr KB; Selwood T; Marquardt U; Huber R; Schechter NM; Bode W; Than ME
    J Mol Biol; 2006 Mar; 357(1):195-209. PubMed ID: 16414069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of active monomers from tetrameric human beta-tryptase.
    Fajardo I; Pejler G
    Biochem J; 2003 Feb; 369(Pt 3):603-10. PubMed ID: 12387726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI).
    Schechter NM; Choi EJ; Wang ZM; Hanakawa Y; Stanley JR; Kang Y; Clayman GL; Jayakumar A
    Biol Chem; 2005 Nov; 386(11):1173-84. PubMed ID: 16307483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocharged inhibitors of mast cell tryptase derived from potent and selective dibasic inhibitors.
    Dener JM; Wang VR; Rice KD; Gangloff AR; Kuo EY; Newcomb WS; Putnam D; Wong M
    Bioorg Med Chem Lett; 2001 Sep; 11(17):2325-30. PubMed ID: 11527724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biochemical studies of inhibitor binding to human cytomegalovirus protease.
    Khayat R; Batra R; Qian C; Halmos T; Bailey M; Tong L
    Biochemistry; 2003 Feb; 42(4):885-91. PubMed ID: 12549906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nafamostat mesilate is an extremely potent inhibitor of human tryptase.
    Mori S; Itoh Y; Shinohata R; Sendo T; Oishi R; Nishibori M
    J Pharmacol Sci; 2003 Aug; 92(4):420-3. PubMed ID: 12939527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a macromolecular scaffold to develop specific protease inhibitors.
    Stoop AA; Craik CS
    Nat Biotechnol; 2003 Sep; 21(9):1063-8. PubMed ID: 12923547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance.
    Schechter NM; Choi EJ; Selwood T; McCaslin DR
    Biochemistry; 2007 Aug; 46(33):9615-29. PubMed ID: 17655281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity enhancement bivalent morpholino for pretargeting: initial evidence by surface plasmon resonance.
    He J; Liu G; Vanderheyden JL; Dou S; Mary R; Hnatowich DJ
    Bioconjug Chem; 2005; 16(2):338-45. PubMed ID: 15769087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors.
    Fukuoka Y; Schwartz LB
    Biochemistry; 2004 Aug; 43(33):10757-64. PubMed ID: 15311937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designed calix[8]arene-based ligands for selective tryptase surface recognition.
    Mecca T; Consoli GM; Geraci C; Cunsolo F
    Bioorg Med Chem; 2004 Oct; 12(19):5057-62. PubMed ID: 15351389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.