These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 14719872)

  • 1. Electrodes modified with monoolein cubic phases hosting laccases for the catalytic reduction of dioxygen.
    Rowiński P; Bilewicz R; Stébé MJ; Rogalska E
    Anal Chem; 2004 Jan; 76(2):283-91. PubMed ID: 14719872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified electrodes based on lipidic cubic phases.
    Bilewicz R; Rowiński P; Rogalska E
    Bioelectrochemistry; 2005 Apr; 66(1-2):3-8. PubMed ID: 15833697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes.
    Nazaruk E; Bilewicz R
    Bioelectrochemistry; 2007 Sep; 71(1):8-14. PubMed ID: 17289444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications.
    Nazaruk E; Sadowska K; Biernat JF; Rogalski J; Ginalska G; Bilewicz R
    Anal Bioanal Chem; 2010 Oct; 398(4):1651-60. PubMed ID: 20658283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode.
    Liu Y; Huang L; Dong S
    Biosens Bioelectron; 2007 Aug; 23(1):35-41. PubMed ID: 17459687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A concept for immobilizing catalytic complexes on electrodes: cubic phase layers for carbon dioxide sensing.
    Rowiński P; Bilewicz R; Stébé MJ; Rogalska E
    Anal Chem; 2002 Apr; 74(7):1554-9. PubMed ID: 12033244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipidic liquid crystalline cubic phases for preparation of ATP-hydrolysing enzyme electrodes.
    Zatloukalová M; Nazaruk E; Novák D; Vacek J; Bilewicz R
    Biosens Bioelectron; 2018 Feb; 100():437-444. PubMed ID: 28961546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode.
    ElKaoutit M; Naranjo-Rodriguez I; Temsamani KR; Domínguez M; Hidalgo-Hidalgo de Cisneros JL
    Talanta; 2008 Jun; 75(5):1348-55. PubMed ID: 18585223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cubic phases in biosensing systems.
    Nazaruk E; Bilewicz R; Lindblom G; Lindholm-Sethson B
    Anal Bioanal Chem; 2008 Jul; 391(5):1569-78. PubMed ID: 18488208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.
    Lin Y; Zhang Z; Zhao L; Wang X; Yu P; Su L; Mao L
    Biosens Bioelectron; 2010 Feb; 25(6):1350-5. PubMed ID: 19926273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hydrogen peroxide biosensor based on the direct electron transfer of hemoglobin encapsulated in liquid-crystalline cubic phase on electrode.
    Gao F; Yao Z; Huang Q; Chen X; Guo X; Ye Q; Wang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):359-64. PubMed ID: 20889315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electrochemical microscopy activity mapping of electrodes modified with laccase encapsulated in sol-gel processed matrix.
    Nogala W; Szot K; Burchardt M; Jönsson-Niedziolka M; Rogalski J; Wittstock G; Opallo M
    Bioelectrochemistry; 2010 Aug; 79(1):101-7. PubMed ID: 20097139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric determination of catalytic reaction parameters of laccase based on electrooxidation of hydroquinone and ABTS.
    Klis M; Rogalski J; Bilewicz R
    Bioelectrochemistry; 2007 Sep; 71(1):2-7. PubMed ID: 17113361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroenzymatic reactions with oxygen on laccase-modified electrodes in anhydrous (pure) organic solvent.
    Yaropolov A; Shleev S; Zaitseva E; Emnéus J; Marko-Varga G; Gorton L
    Bioelectrochemistry; 2007 May; 70(2):199-204. PubMed ID: 16920407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of native and hydrophobic laccases immobilized in the liquid-crystalline cubic phase on electrodes.
    Nazaruk E; Michota A; Bukowska J; Shleev S; Gorton L; Bilewicz R
    J Biol Inorg Chem; 2007 Mar; 12(3):335-44. PubMed ID: 17151864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor.
    Mousty C; Vieille L; Cosnier S
    Biosens Bioelectron; 2007 Mar; 22(8):1733-8. PubMed ID: 17023155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laccases: structure, reactions, distribution.
    Claus H
    Micron; 2004; 35(1-2):93-6. PubMed ID: 15036303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode.
    Ardhaoui M; Bhatt S; Zheng M; Dowling D; Jolivalt C; Khonsari FA
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3197-205. PubMed ID: 23706201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability.
    Grippo V; Ma S; Ludwig R; Gorton L; Bilewicz R
    Bioelectrochemistry; 2019 Feb; 125():134-141. PubMed ID: 29128298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.