BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 14719886)

  • 1. Nanosecond and femtosecond laser ablation of brass: particulate and ICPMS measurements.
    Liu C; Mao XL; Mao SS; Zeng X; Greif R; Russo RE
    Anal Chem; 2004 Jan; 76(2):379-83. PubMed ID: 14719886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal particles produced by laser ablation for ICP-MS measurements.
    Gonzalez JJ; Liu C; Wen SB; Mao X; Russo RE
    Talanta; 2007 Sep; 73(3):567-76. PubMed ID: 19073072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon.
    Poitrasson F; Mao X; Mao SS; Freydier R; Russo RE
    Anal Chem; 2003 Nov; 75(22):6184-90. PubMed ID: 14615999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase and composition changes of titanite during laser ablation inductively coupled plasma mass spectrometry analysis.
    Fliegel D; Klementova M; Kosler J
    Anal Chem; 2010 May; 82(10):4272-7. PubMed ID: 20423052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of ultrafine particles by nanosecond laser sampling using orthogonal prepulse laser breakdown.
    Lindner H; Koch J; Niemax K
    Anal Chem; 2005 Dec; 77(23):7528-33. PubMed ID: 16316158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS.
    Fernández B; Claverie F; Pécheyran C; Alexis J; Donard OF
    Anal Chem; 2008 Sep; 80(18):6981-94. PubMed ID: 18714966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of selenoproteins in gel electrophoresis by high repetition rate femtosecond laser ablation-inductively coupled plasma mass spectrometry.
    Ballihaut G; Claverie F; Pécheyran C; Mounicou S; Grimaud R; Lobinski R
    Anal Chem; 2007 Sep; 79(17):6874-80. PubMed ID: 17665877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings.
    Pisonero J; Koch J; Wälle M; Hartung W; Spencer ND; Günther D
    Anal Chem; 2007 Mar; 79(6):2325-33. PubMed ID: 17305314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The agglomeration state of nanosecond laser-generated aerosol particles entering the ICP.
    Kuhn HR; Günther D
    Anal Bioanal Chem; 2005 Oct; 383(3):434-41. PubMed ID: 16132149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass particles produced by laser ablation for ICP-MS measurements.
    Gonzalez JJ; Liu C; Wen SB; Mao X; Russo RE
    Talanta; 2007 Sep; 73(3):577-82. PubMed ID: 19073073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry.
    Becker JS; Zoriy MV; Pickhardt C; Palomero-Gallagher N; Zilles K
    Anal Chem; 2005 May; 77(10):3208-16. PubMed ID: 15889910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials.
    Holá M; Mikuska P; Hanzlíková R; Kaiser J; Kanický V
    Talanta; 2010 Mar; 80(5):1862-7. PubMed ID: 20152424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles.
    Pointurier F; Pottin AC; Hubert A
    Anal Chem; 2011 Oct; 83(20):7841-8. PubMed ID: 21875035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.
    Fornarini L; Fantoni R; Colao F; Santagata A; Teghil R; Elhassan A; Harith MA
    J Phys Chem A; 2009 Dec; 113(52):14364-74. PubMed ID: 19817368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales.
    Guo YQ; Bhattacharya A; Bernstein ER
    J Phys Chem A; 2009 Jan; 113(1):85-96. PubMed ID: 19118481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue.
    Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H
    Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols.
    Kuhn HR; Günther D
    Anal Chem; 2003 Feb; 75(4):747-53. PubMed ID: 12622362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle size dependent chemistry from laser ablation of brass.
    Liu C; Mao X; Mao SS; Greif R; Russo RE
    Anal Chem; 2005 Oct; 77(20):6687-91. PubMed ID: 16223257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry.
    Mateo MP; Garcia CC; Hergenröder R
    Anal Chem; 2007 Jul; 79(13):4908-14. PubMed ID: 17547369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.