These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 14719886)
1. Nanosecond and femtosecond laser ablation of brass: particulate and ICPMS measurements. Liu C; Mao XL; Mao SS; Zeng X; Greif R; Russo RE Anal Chem; 2004 Jan; 76(2):379-83. PubMed ID: 14719886 [TBL] [Abstract][Full Text] [Related]
2. Metal particles produced by laser ablation for ICP-MS measurements. Gonzalez JJ; Liu C; Wen SB; Mao X; Russo RE Talanta; 2007 Sep; 73(3):567-76. PubMed ID: 19073072 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon. Poitrasson F; Mao X; Mao SS; Freydier R; Russo RE Anal Chem; 2003 Nov; 75(22):6184-90. PubMed ID: 14615999 [TBL] [Abstract][Full Text] [Related]
4. Phase and composition changes of titanite during laser ablation inductively coupled plasma mass spectrometry analysis. Fliegel D; Klementova M; Kosler J Anal Chem; 2010 May; 82(10):4272-7. PubMed ID: 20423052 [TBL] [Abstract][Full Text] [Related]
5. Production of ultrafine particles by nanosecond laser sampling using orthogonal prepulse laser breakdown. Lindner H; Koch J; Niemax K Anal Chem; 2005 Dec; 77(23):7528-33. PubMed ID: 16316158 [TBL] [Abstract][Full Text] [Related]
6. Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS. Fernández B; Claverie F; Pécheyran C; Alexis J; Donard OF Anal Chem; 2008 Sep; 80(18):6981-94. PubMed ID: 18714966 [TBL] [Abstract][Full Text] [Related]
7. Sensitive detection of selenoproteins in gel electrophoresis by high repetition rate femtosecond laser ablation-inductively coupled plasma mass spectrometry. Ballihaut G; Claverie F; Pécheyran C; Mounicou S; Grimaud R; Lobinski R Anal Chem; 2007 Sep; 79(17):6874-80. PubMed ID: 17665877 [TBL] [Abstract][Full Text] [Related]
8. Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings. Pisonero J; Koch J; Wälle M; Hartung W; Spencer ND; Günther D Anal Chem; 2007 Mar; 79(6):2325-33. PubMed ID: 17305314 [TBL] [Abstract][Full Text] [Related]
9. The agglomeration state of nanosecond laser-generated aerosol particles entering the ICP. Kuhn HR; Günther D Anal Bioanal Chem; 2005 Oct; 383(3):434-41. PubMed ID: 16132149 [TBL] [Abstract][Full Text] [Related]
10. Glass particles produced by laser ablation for ICP-MS measurements. Gonzalez JJ; Liu C; Wen SB; Mao X; Russo RE Talanta; 2007 Sep; 73(3):577-82. PubMed ID: 19073073 [TBL] [Abstract][Full Text] [Related]
11. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Becker JS; Zoriy MV; Pickhardt C; Palomero-Gallagher N; Zilles K Anal Chem; 2005 May; 77(10):3208-16. PubMed ID: 15889910 [TBL] [Abstract][Full Text] [Related]
12. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials. Holá M; Mikuska P; Hanzlíková R; Kaiser J; Kanický V Talanta; 2010 Mar; 80(5):1862-7. PubMed ID: 20152424 [TBL] [Abstract][Full Text] [Related]
13. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles. Pointurier F; Pottin AC; Hubert A Anal Chem; 2011 Oct; 83(20):7841-8. PubMed ID: 21875035 [TBL] [Abstract][Full Text] [Related]
14. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data. Fornarini L; Fantoni R; Colao F; Santagata A; Teghil R; Elhassan A; Harith MA J Phys Chem A; 2009 Dec; 113(52):14364-74. PubMed ID: 19817368 [TBL] [Abstract][Full Text] [Related]
15. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry. Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581 [TBL] [Abstract][Full Text] [Related]
16. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales. Guo YQ; Bhattacharya A; Bernstein ER J Phys Chem A; 2009 Jan; 113(1):85-96. PubMed ID: 19118481 [TBL] [Abstract][Full Text] [Related]
17. Hollow-waveguide-based nanosecond, near-infrared pulsed laser ablation of tissue. Sato S; Shi YW; Matsuura Y; Miyagi M; Ashida H Lasers Surg Med; 2005 Aug; 37(2):149-54. PubMed ID: 16097010 [TBL] [Abstract][Full Text] [Related]
18. Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols. Kuhn HR; Günther D Anal Chem; 2003 Feb; 75(4):747-53. PubMed ID: 12622362 [TBL] [Abstract][Full Text] [Related]
19. Particle size dependent chemistry from laser ablation of brass. Liu C; Mao X; Mao SS; Greif R; Russo RE Anal Chem; 2005 Oct; 77(20):6687-91. PubMed ID: 16223257 [TBL] [Abstract][Full Text] [Related]
20. Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry. Mateo MP; Garcia CC; Hergenröder R Anal Chem; 2007 Jul; 79(13):4908-14. PubMed ID: 17547369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]