BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14719902)

  • 1. Transport, location, and quantal release monitoring of single cells on a microfluidic device.
    Huang WH; Cheng W; Zhang Z; Pang DW; Wang ZL; Cheng JK; Cui DF
    Anal Chem; 2004 Jan; 76(2):483-8. PubMed ID: 14719902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells.
    Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R
    Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microchip electrophoresis device with on-line microdialysis sampling and on-chip sample derivatization by naphthalene 2,3-dicarboxaldehyde/2-mercaptoethanol for amino acid and peptide analysis.
    Huynh BH; Fogarty BA; Nandi P; Lunte SM
    J Pharm Biomed Anal; 2006 Nov; 42(5):529-34. PubMed ID: 16829012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel separation of multiple samples with negative pressure sample injection on a 3-D microfluidic array chip.
    Zhang L; Yin X
    Electrophoresis; 2007 Apr; 28(8):1281-8. PubMed ID: 17366485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital microfluidics using soft lithography.
    Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T
    Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.
    Li MW; Martin RS
    Electrophoresis; 2007 Jul; 28(14):2478-88. PubMed ID: 17577199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated microfluidic biochips for DNA microarray analysis.
    Liu RH; Dill K; Fuji HS; McShea A
    Expert Rev Mol Diagn; 2006 Mar; 6(2):253-61. PubMed ID: 16512784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction.
    Nam KH; Chang WJ; Hong H; Lim SM; Kim DI; Koo YM
    Biomed Microdevices; 2005 Sep; 7(3):189-95. PubMed ID: 16133806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device for electric field-driven single-cell capture and activation.
    Toriello NM; Douglas ES; Mathies RA
    Anal Chem; 2005 Nov; 77(21):6935-41. PubMed ID: 16255592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel multi-depth microfluidic chip for single cell analysis.
    Yue S; Xue-Feng Y
    J Chromatogr A; 2006 Jun; 1117(2):228-33. PubMed ID: 16620849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chip to produce temperature jumps for electrophysiology.
    Pennell T; Suchyna T; Wang J; Heo J; Felske JD; Sachs F; Hua SZ
    Anal Chem; 2008 Apr; 80(7):2447-51. PubMed ID: 18302344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying.
    Tan A; Rodgers K; Murrihy J; O'Mathuna C; Glennon JD
    Lab Chip; 2001 Sep; 1(1):7-9. PubMed ID: 15100882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.