These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates. Wyss M; James P; Schlegel J; Wallimann T Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. Wyss M; Schlegel J; James P; Eppenberger HM; Wallimann T J Biol Chem; 1990 Sep; 265(26):15900-8. PubMed ID: 2394753 [TBL] [Abstract][Full Text] [Related]
4. Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. Schlegel J; Zurbriggen B; Wegmann G; Wyss M; Eppenberger HM; Wallimann T J Biol Chem; 1988 Nov; 263(32):16942-53. PubMed ID: 3182823 [TBL] [Abstract][Full Text] [Related]
5. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Furter R; Furter-Graves EM; Wallimann T Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132 [TBL] [Abstract][Full Text] [Related]
7. Functional differences between dimeric and octameric mitochondrial creatine kinase. Kaldis P; Wallimann T Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):623-7. PubMed ID: 7772050 [TBL] [Abstract][Full Text] [Related]
8. Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. Schlegel J; Wyss M; Eppenberger HM; Wallimann T J Biol Chem; 1990 Jun; 265(16):9221-7. PubMed ID: 2345172 [TBL] [Abstract][Full Text] [Related]
9. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation. Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of active octameric mitochondrial creatine kinase from two genetically engineered fragments. Gross M; Wyss M; Furter-Graves EM; Wallimann T; Furter R Protein Sci; 1996 Feb; 5(2):320-30. PubMed ID: 8745410 [TBL] [Abstract][Full Text] [Related]
11. The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization. Kaldis P; Furter R; Wallimann T Biochemistry; 1994 Feb; 33(4):952-9. PubMed ID: 8305443 [TBL] [Abstract][Full Text] [Related]
13. Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. Schnyder T; Engel A; Lustig A; Wallimann T J Biol Chem; 1988 Nov; 263(32):16954-62. PubMed ID: 3182824 [TBL] [Abstract][Full Text] [Related]
14. Over-expression, purification and characterization of the oligomerization dynamics of an invertebrate mitochondrial creatine kinase. Hoffman GG; Ellington WR Biochim Biophys Acta; 2005 Aug; 1751(2):184-93. PubMed ID: 15975860 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial creatine kinase from human heart muscle: purification and characterization of the crystallized isoenzyme. Blum HE; Deus B; Gerok W J Biochem; 1983 Oct; 94(4):1247-57. PubMed ID: 6418727 [TBL] [Abstract][Full Text] [Related]
17. Overexpression, purification, and preliminary X-ray crystallographic analysis of human brain-type creatine kinase. Bong SM; Moon JH; Jang EH; Lee KS; Chi YM J Microbiol Biotechnol; 2008 Feb; 18(2):295-8. PubMed ID: 18309274 [TBL] [Abstract][Full Text] [Related]
18. Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. Khuchua ZA; Qin W; Boero J; Cheng J; Payne RM; Saks VA; Strauss AW J Biol Chem; 1998 Sep; 273(36):22990-6. PubMed ID: 9722522 [TBL] [Abstract][Full Text] [Related]
19. Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Koufen P; Rück A; Brdiczka D; Wendt S; Wallimann T; Stark G Biochem J; 1999 Dec; 344 Pt 2(Pt 2):413-7. PubMed ID: 10567223 [TBL] [Abstract][Full Text] [Related]
20. Production of recombinant human creatine kinase (r-hCK) isozymes by tandem repeat expression of M and B genes and characterization of r-hCK-MB. Sunahara Y; Uchida K; Tanaka T; Matsukawa H; Inagaki M; Matuo Y Clin Chem; 2001 Mar; 47(3):471-6. PubMed ID: 11238299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]