These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 14719922)
1. Mechanism of Ru(II)-catalyzed olefin insertion and C-H activation from quantum chemical studies. Oxgaard J; Goddard WA J Am Chem Soc; 2004 Jan; 126(2):442-3. PubMed ID: 14719922 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of homogeneous Ir(III) catalyzed regioselective arylation of olefins. Oxgaard J; Muller RP; Goddard WA; Periana RA J Am Chem Soc; 2004 Jan; 126(1):352-63. PubMed ID: 14709102 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic analysis of hydroarylation catalysts. Oxgaard J; Periana RA; Goddard WA J Am Chem Soc; 2004 Sep; 126(37):11658-65. PubMed ID: 15366913 [TBL] [Abstract][Full Text] [Related]
4. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts. Foley NA; Lee JP; Ke Z; Gunnoe TB; Cundari TR Acc Chem Res; 2009 May; 42(5):585-97. PubMed ID: 19296659 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen-atom transfer in reactions of organic radicals with [Co(II)(por)]* (por = porphyrinato) and in subsequent addition of [Co(H)(por)] to olefins. de Bruin B; Dzik WI; Li S; Wayland BB Chemistry; 2009; 15(17):4312-20. PubMed ID: 19266521 [TBL] [Abstract][Full Text] [Related]
6. Promotion of iridium-catalyzed methanol carbonylation: mechanistic studies of the cativa process. Haynes A; Maitlis PM; Morris GE; Sunley GJ; Adams H; Badger PW; Bowers CM; Cook DB; Elliott PI; Ghaffar T; Green H; Griffin TR; Payne M; Pearson JM; Taylor MJ; Vickers PW; Watt RJ J Am Chem Soc; 2004 Mar; 126(9):2847-61. PubMed ID: 14995202 [TBL] [Abstract][Full Text] [Related]
7. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Park YJ; Park JW; Jun CH Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521 [TBL] [Abstract][Full Text] [Related]
8. Comparative reactivity of TpRu(L)(NCMe)Ph (L = CO or PMe3): impact of ancillary ligand l on activation of carbon-hydrogen bonds including catalytic hydroarylation and hydrovinylation/oligomerization of ethylene. Foley NA; Lail M; Lee JP; Gunnoe TB; Cundari TR; Petersen JL J Am Chem Soc; 2007 May; 129(21):6765-81. PubMed ID: 17488072 [TBL] [Abstract][Full Text] [Related]
9. [Ni0]-catalyzed Co-oligomerization of 1,3-butadiene and ethylene: a theoretical mechanistic investigation of competing routes for generation of linear and cyclic C10-olefins. Tobisch S J Am Chem Soc; 2004 Jan; 126(1):259-72. PubMed ID: 14709091 [TBL] [Abstract][Full Text] [Related]
10. Why are olefins oxidized by RuO4 under cleavage of the carbon-carbon bond whereas oxidation by OsO4 yields cis-diols? Frunzke J; Loschen C; Frenking G J Am Chem Soc; 2004 Mar; 126(11):3642-52. PubMed ID: 15025493 [TBL] [Abstract][Full Text] [Related]
11. Activation of carbon-hydrogen bonds via 1,2-addition across M-X (X = OH or NH(2)) bonds of d(6) transition metals as a potential key step in hydrocarbon functionalization: a computational study. Cundari TR; Grimes TV; Gunnoe TB J Am Chem Soc; 2007 Oct; 129(43):13172-82. PubMed ID: 17918940 [TBL] [Abstract][Full Text] [Related]
12. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Urakawa A; Jutz F; Laurenczy G; Baiker A Chemistry; 2007; 13(14):3886-99. PubMed ID: 17294492 [TBL] [Abstract][Full Text] [Related]
13. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation? de Visser SP; Tan LS J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806 [TBL] [Abstract][Full Text] [Related]
14. Computational study of ethene hydroarylation at [Ir(κ(2)-OAc)(PMe3)Cp]+. Davies DL; Macgregor SA; Poblador-Bahamonde AI Dalton Trans; 2010 Nov; 39(43):10520-7. PubMed ID: 20927456 [TBL] [Abstract][Full Text] [Related]
16. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*. Yang X; Baik MH J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301 [TBL] [Abstract][Full Text] [Related]
17. DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. Janse van Rensburg W; Steynberg PJ; Meyer WH; Kirk MM; Forman GS J Am Chem Soc; 2004 Nov; 126(44):14332-3. PubMed ID: 15521734 [TBL] [Abstract][Full Text] [Related]
18. Palladium-catalyzed intramolecular C(sp(3))--H functionalization: catalyst development and synthetic applications. Hitce J; Retailleau P; Baudoin O Chemistry; 2007; 13(3):792-9. PubMed ID: 17044108 [TBL] [Abstract][Full Text] [Related]
19. The rate-determining step in the rhodium-xantphos-catalysed hydroformylation of 1-octene. Zuidema E; Escorihuela L; Eichelsheim T; Carbó JJ; Bo C; Kamer PC; van Leeuwen PW Chemistry; 2008; 14(6):1843-53. PubMed ID: 18061923 [TBL] [Abstract][Full Text] [Related]
20. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase? Schenk S; Kesselmeier J; Anders E Chemistry; 2004 Jun; 10(12):3091-105. PubMed ID: 15214093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]