BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14719931)

  • 1. Expression, reconstitution, and mutation of recombinant Streptomycescoelicolor NiSOD.
    Bryngelson PA; Arobo SE; Pinkham JL; Cabelli DE; Maroney MJ
    J Am Chem Soc; 2004 Jan; 126(2):460-1. PubMed ID: 14719931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel superoxide dismutase structure and mechanism.
    Barondeau DP; Kassmann CJ; Bruns CK; Tainer JA; Getzoff ED
    Biochemistry; 2004 Jun; 43(25):8038-47. PubMed ID: 15209499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase.
    Choudhury SB; Lee JW; Davidson G; Yim YI; Bose K; Sharma ML; Kang SO; Cabelli DE; Maroney MJ
    Biochemistry; 1999 Mar; 38(12):3744-52. PubMed ID: 10090763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Semisynthetic Strategy Leads to Alteration of the Backbone Amidate Ligand in the NiSOD Active Site.
    Campeciño JO; Dudycz LW; Tumelty D; Berg V; Cabelli DE; Maroney MJ
    J Am Chem Soc; 2015 Jul; 137(28):9044-52. PubMed ID: 26135142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S K-edge X-ray absorption spectroscopic investigation of the Ni-containing superoxide dismutase active site: new structural insight into the mechanism.
    Szilagyi RK; Bryngelson PA; Maroney MJ; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2004 Mar; 126(10):3018-9. PubMed ID: 15012109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and computational studies of Ni superoxide dismutase: electronic structure contributions to enzymatic function.
    Fiedler AT; Bryngelson PA; Maroney MJ; Brunold TC
    J Am Chem Soc; 2005 Apr; 127(15):5449-62. PubMed ID: 15826182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase.
    Eitinger T
    J Bacteriol; 2004 Nov; 186(22):7821-5. PubMed ID: 15516600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of conserved tyrosine residues in NiSOD catalysis: a case of convergent evolution.
    Herbst RW; Guce A; Bryngelson PA; Higgins KA; Ryan KC; Cabelli DE; Garman SC; Maroney MJ
    Biochemistry; 2009 Apr; 48(15):3354-69. PubMed ID: 19183068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Müller.
    Kim EJ; Chung HJ; Suh B; Hah YC; Roe JH
    Mol Microbiol; 1998 Jan; 27(1):187-95. PubMed ID: 9466266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insight into the mode of action of nickel superoxide dismutase by investigating metallopeptide substrate models.
    Tietze D; Breitzke H; Imhof D; Kothe E; Weston J; Buntkowsky G
    Chemistry; 2009; 15(2):517-23. PubMed ID: 19016282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic analogues of nickel superoxide dismutase: a new role for nickel in biology.
    Broering EP; Truong PT; Gale EM; Harrop TC
    Biochemistry; 2013 Jan; 52(1):4-18. PubMed ID: 23240653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico analysis of nickel containing superoxide dismutase evolution and regulation.
    Schmidt A; Gube M; Schmidt A; Kothe E
    J Basic Microbiol; 2009 Feb; 49(1):109-18. PubMed ID: 19253325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide dismutases of heavy metal resistant streptomycetes.
    Schmidt A; Schmidt A; Haferburg G; Kothe E
    J Basic Microbiol; 2007 Feb; 47(1):56-62. PubMed ID: 17304620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of a functional biomimetic and mechanistic implications for nickel superoxide dismutases.
    Schmidt M; Zahn S; Carella M; Ohlenschläger O; Görlach M; Kothe E; Weston J
    Chembiochem; 2008 Sep; 9(13):2135-46. PubMed ID: 18690655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel superoxide dismutase: structural and functional roles of Cys2 and Cys6.
    Ryan KC; Johnson OE; Cabelli DE; Brunold TC; Maroney MJ
    J Biol Inorg Chem; 2010 Jun; 15(5):795-807. PubMed ID: 20333421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of a proton linkage pathway in Escherichia coli manganese superoxide dismutase.
    Whittaker MM; Whittaker JW
    Biochemistry; 1997 Jul; 36(29):8923-31. PubMed ID: 9220980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and computational studies of Ni3+ complexes with mixed S/N ligation: implications for the active site of nickel superoxide dismutase.
    Fiedler AT; Brunold TC
    Inorg Chem; 2007 Oct; 46(21):8511-23. PubMed ID: 17305331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetinase QueD of Streptomyces sp. FLA, a monocupin dioxygenase with a preference for nickel and cobalt.
    Merkens H; Kappl R; Jakob RP; Schmid FX; Fetzner S
    Biochemistry; 2008 Nov; 47(46):12185-96. PubMed ID: 18950192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics.
    Shearer J
    Acc Chem Res; 2014 Aug; 47(8):2332-41. PubMed ID: 24825124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A square-planar Ni(II) complex with an N2S2 donor set similar to the active centre of nickel-containing superoxide dismutase and its reaction with superoxide.
    Nakane D; Kuwasako SI; Tsuge M; Kubo M; Funahashi Y; Ozawa T; Ogura T; Masuda H
    Chem Commun (Camb); 2010 Mar; 46(12):2142-4. PubMed ID: 20221519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.