BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 14719993)

  • 21. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study.
    Sermet-Gaudelus I; Renouil M; Fajac A; Bidou L; Parbaille B; Pierrot S; Davy N; Bismuth E; Reinert P; Lenoir G; Lesure JF; Rousset JP; Edelman A
    BMC Med; 2007 Mar; 5():5. PubMed ID: 17394637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR.
    Rubenstein RC; Egan ME; Zeitlin PL
    J Clin Invest; 1997 Nov; 100(10):2457-65. PubMed ID: 9366560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacological treatment of the basic defect in cystic fibrosis.
    Roomans GM
    Cell Biol Int; 2014 Nov; 38(11):1244-6. PubMed ID: 24809326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repairing the basic defect in cystic fibrosis - one approach is not enough.
    Farinha CM; Matos P
    FEBS J; 2016 Jan; 283(2):246-64. PubMed ID: 26416076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
    Patel S; Sinha IP; Dwan K; Echevarria C; Schechter M; Southern KW
    Cochrane Database Syst Rev; 2015 Mar; (3):CD009841. PubMed ID: 25811419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease.
    Moore PJ; Tarran R
    Expert Opin Ther Targets; 2018 Aug; 22(8):687-701. PubMed ID: 30028216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacologic treatment of abnormal ion transport in the airway epithelium in cystic fibrosis.
    Knowles MR; Olivier KN; Hohneker KW; Robinson J; Bennett WD; Boucher RC
    Chest; 1995 Feb; 107(2 Suppl):71S-76S. PubMed ID: 7842817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic approaches to CFTR dysfunction: From discovery to drug development.
    Li H; Pesce E; Sheppard DN; Singh AK; Pedemonte N
    J Cyst Fibros; 2018 Mar; 17(2S):S14-S21. PubMed ID: 28916430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacogenomics of the cystic fibrosis transmembrane conductance regulator (CFTR) and the cystic fibrosis drug CPX using genome microarray analysis.
    Srivastava M; Eidelman O; Pollard HB
    Mol Med; 1999 Nov; 5(11):753-67. PubMed ID: 10656877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation specific therapy in CF.
    Kerem E
    Paediatr Respir Rev; 2006; 7 Suppl 1():S166-9. PubMed ID: 16798551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients.
    Dray-Charier N; Paul A; Scoazec JY; Veissière D; Mergey M; Capeau J; Soubrane O; Housset C
    Hepatology; 1999 Jun; 29(6):1624-34. PubMed ID: 10347100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F
    Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype.
    Beck S; Kühr J; Schütz VV; Seydewitz HH; Brandis M; Greger R; Kunzelmann K
    Pediatr Pulmonol; 1999 Apr; 27(4):251-9. PubMed ID: 10230924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A truncated CFTR protein rescues endogenous DeltaF508-CFTR and corrects chloride transport in mice.
    Cormet-Boyaka E; Hong JS; Berdiev BK; Fortenberry JA; Rennolds J; Clancy JP; Benos DJ; Boyaka PN; Sorscher EJ
    FASEB J; 2009 Nov; 23(11):3743-51. PubMed ID: 19620404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis.
    Marcet B; Boeynaems JM
    Pharmacol Ther; 2006 Dec; 112(3):719-32. PubMed ID: 16828872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Curcumin does not stimulate cAMP-mediated chloride transport in cystic fibrosis airway epithelial cells.
    Dragomir A; Björstad J; Hjelte L; Roomans GM
    Biochem Biophys Res Commun; 2004 Sep; 322(2):447-51. PubMed ID: 15325250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion channels as targets to treat cystic fibrosis lung disease.
    Martin SL; Saint-Criq V; Hwang TC; Csanády L
    J Cyst Fibros; 2018 Mar; 17(2S):S22-S27. PubMed ID: 29102290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of purinergic stimulation, CFTR and osmotic stress on amiloride-sensitive Na+ transport in epithelia and Xenopus oocytes.
    Schreiber R; König J; Sun J; Markovich D; Kunzelmann K
    J Membr Biol; 2003 Mar; 192(2):101-10. PubMed ID: 12682798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of CFTR by genistein in human airway epithelial cell lines.
    Andersson C; Servetnyk Z; Roomans GM
    Biochem Biophys Res Commun; 2003 Aug; 308(3):518-22. PubMed ID: 12914781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.