BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 14720462)

  • 1. The Drosophila kinesin-I associated protein YETI binds both kinesin subunits.
    Wisniewski TP; Tanzi CL; Gindhart JG
    Biol Cell; 2003 Dec; 95(9):595-602. PubMed ID: 14720462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system.
    Gindhart JG; Chen J; Faulkner M; Gandhi R; Doerner K; Wisniewski T; Nandlestadt A
    Mol Biol Cell; 2003 Aug; 14(8):3356-65. PubMed ID: 12925768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23.
    Diefenbach RJ; Diefenbach E; Douglas MW; Cunningham AL
    Biochemistry; 2002 Dec; 41(50):14906-15. PubMed ID: 12475239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein.
    Bowman AB; Kamal A; Ritchings BW; Philp AV; McGrail M; Gindhart JG; Goldstein LS
    Cell; 2000 Nov; 103(4):583-94. PubMed ID: 11106729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KAP, the accessory subunit of kinesin-2, binds the predicted coiled-coil stalk of the motor subunits.
    Doodhi H; Ghosal D; Krishnamurthy M; Jana SC; Shamala D; Bhaduri A; Sowdhamini R; Ray K
    Biochemistry; 2009 Mar; 48(10):2248-60. PubMed ID: 19161286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeti, an essential Drosophila melanogaster gene, encodes a protein required for chromatin organization.
    Messina G; Damia E; Fanti L; Atterrato MT; Celauro E; Mariotti FR; Accardo MC; Walther M; Vernì F; Picchioni D; Moschetti R; Caizzi R; Piacentini L; Cenci G; Giordano E; Dimitri P
    J Cell Sci; 2014 Jun; 127(Pt 11):2577-88. PubMed ID: 24652835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility.
    Loiseau P; Davies T; Williams LS; Mishima M; Palacios IM
    Development; 2010 Aug; 137(16):2763-72. PubMed ID: 20630947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of kinesin-1-based microtubule sliding in Drosophila nervous system development.
    Winding M; Kelliher MT; Lu W; Wildonger J; Gelfand VI
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4985-94. PubMed ID: 27512046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline.
    Williams LS; Ganguly S; Loiseau P; Ng BF; Palacios IM
    Development; 2014 Jan; 141(1):176-86. PubMed ID: 24257625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinesin-1 tail autoregulation and microtubule-binding regions function in saltatory transport but not ooplasmic streaming.
    Moua P; Fullerton D; Serbus LR; Warrior R; Saxton WM
    Development; 2011 Mar; 138(6):1087-92. PubMed ID: 21307100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards an understanding of kinesin-1 dependent transport pathways through the study of protein-protein interactions.
    Gindhart JG
    Brief Funct Genomic Proteomic; 2006 Mar; 5(1):74-86. PubMed ID: 16769683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain.
    Gauger AK; Goldstein LS
    J Biol Chem; 1993 Jun; 268(18):13657-66. PubMed ID: 8514798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The True Story of
    Prozzillo Y; Delle Monache F; Ferreri D; Cuticone S; Dimitri P; Messina G
    Front Physiol; 2019; 10():1093. PubMed ID: 31507454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-operative versus independent transport of different cargoes by Kinesin-1.
    Hammond JW; Griffin K; Jih GT; Stuckey J; Verhey KJ
    Traffic; 2008 May; 9(5):725-41. PubMed ID: 18266909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinesin-73 in the nervous system of Drosophila embryos.
    Li HP; Liu ZM; Nirenberg M
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1086-91. PubMed ID: 9037010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy.
    Kerssemakers J; Howard J; Hess H; Diez S
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15812-7. PubMed ID: 17035506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aplip1, the
    Auld AL; Roberts SA; Murphy CB; Camuglia JM; Folker ES
    J Cell Sci; 2018 Mar; 131(6):. PubMed ID: 29487176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B.
    Diefenbach RJ; Diefenbach E; Douglas MW; Cunningham AL
    Biochem Biophys Res Commun; 2004 Jul; 319(3):987-92. PubMed ID: 15184079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Follicle separation during Drosophila oogenesis requires the activity of the kinesin II-associated polypeptide Kap in germline cells.
    Pflanz R; Peter A; Schäfer U; Jäckle H
    EMBO Rep; 2004 May; 5(5):510-4. PubMed ID: 15088066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila Dynein light chain (DDLC1) binds to gurken mRNA and is required for its localization.
    Rom I; Faicevici A; Almog O; Neuman-Silberberg FS
    Biochim Biophys Acta; 2007 Oct; 1773(10):1526-33. PubMed ID: 17561283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.