These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14720551)

  • 1. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors.
    Bae HS; Yamagishi T; Suwa Y
    Chemosphere; 2004 Apr; 55(1):93-100. PubMed ID: 14720551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):118-24. PubMed ID: 12073142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxygen on biodegradation of benzoate and 3-chlorobenzoate in a denitrifying chemostat.
    Deniz T; Cinar O; Grady CP
    Water Res; 2004 Dec; 38(20):4524-34. PubMed ID: 15556227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors.
    Kazumi J; Häggblom MM; Young LY
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):929-36. PubMed ID: 7576560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium.
    Häggblom MM; Young LY
    Arch Microbiol; 1999 Mar; 171(4):230-6. PubMed ID: 10339806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial degradation of phenol in denitrifying conditions.
    Błaszczyk M; Przytocka-Jusiak M; Suszek A; Mielcarek A
    Acta Microbiol Pol; 1998; 47(1):65-75. PubMed ID: 9735058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids.
    Häggblom MM; Rivera MD; Young LY
    Appl Environ Microbiol; 1993 Apr; 59(4):1162-7. PubMed ID: 8476290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Microbiology (Reading); 2002 Jan; 148(Pt 1):221-227. PubMed ID: 11782514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples.
    Häggblom MM; Rivera MD; Young LY
    FEMS Microbiol Lett; 1996 Nov; 144(2-3):213-9. PubMed ID: 9011523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose.
    Yang Y; Tsukahara K; Yagishita T; Sawayama S
    Bioresour Technol; 2004 Sep; 94(2):197-201. PubMed ID: 15158513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor.
    Kleerebezem R; Beckers J; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2005 Jul; 91(2):169-79. PubMed ID: 15889396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of pure cultures of hydrogen-oxidizing denitrifying bacteria and modeling of the interactions among them in mixed cultures.
    Vasiliadou IA; Siozios S; Papadas IT; Bourtzis K; Pavlou S; Vayenas DV
    Biotechnol Bioeng; 2006 Oct; 95(3):513-25. PubMed ID: 16758460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways.
    Kim SG; Bae HS; Lee ST
    Arch Microbiol; 2001 Oct; 176(4):271-7. PubMed ID: 11685371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments.
    Bae HS; Im WT; Suwa Y; Lee JM; Lee ST; Chang YK
    Arch Microbiol; 2009 Apr; 191(4):329-40. PubMed ID: 19183960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term storage conditions for carriers with denitrifying biomass of the fluidized, methanol-fed denitrification reactor of the Montreal Biodome, and the impact on denitrifying activity and bacterial population.
    Laurin V; Labbé N; Juteau P; Parent S; Villemur R
    Water Res; 2006 May; 40(9):1836-40. PubMed ID: 16624369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes coding for hydrolytic dehalogenation in the metagenome derived from a denitrifying 4-chlorobenzoate degrading consortium.
    Chae JC; Song B; Zylstra GJ
    FEMS Microbiol Lett; 2008 Apr; 281(2):203-9. PubMed ID: 18355280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.
    Song B; Kerkhof LJ; Häggblom MM
    FEMS Microbiol Lett; 2002 Aug; 213(2):183-8. PubMed ID: 12167535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the microbial population dynamics and phylogenetic characterization of a CANOXIS reactor and a UASB reactor degrading trichloroethene.
    Tresse O; Mounien F; Lévesque MJ; Guiot S
    J Appl Microbiol; 2005; 98(2):440-9. PubMed ID: 15659198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.