BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14722025)

  • 1. Pancreatic beta-cells communicate via intermittent release of ATP.
    Hellman B; Dansk H; Grapengiesser E
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E759-65. PubMed ID: 14722025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External ATP triggers Ca2+ signals suited for synchronization of pancreatic beta-cells.
    Grapengiesser E; Dansk H; Hellman B
    J Endocrinol; 2005 Apr; 185(1):69-79. PubMed ID: 15817828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent paracrine intercellular communication in cultured bovine corneal endothelial cells.
    Gomes P; Srinivas SP; Vereecke J; Himpens B
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):104-13. PubMed ID: 15623761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors.
    Tudurí E; Filiputti E; Carneiro EM; Quesada I
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E952-60. PubMed ID: 18349114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma membrane associated ATP as a regulator of the secretory activity of the pancreatic beta-cell.
    Hellman B; Gylfe E; Wesslén N; Hallberg A; Grapengiesser E; Marcström A
    Exp Clin Endocrinol; 1989 May; 93(2-3):125-35. PubMed ID: 2550267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercellular communication: role of gap junctions in establishing the pattern of ATP-elicited Ca2+ oscillations and Ca2+-dependent currents in freshly isolated aortic smooth muscle cells.
    Fanchaouy M; Serir K; Meister JJ; Beny JL; Bychkov R
    Cell Calcium; 2005 Jan; 37(1):25-34. PubMed ID: 15541461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose and tolbutamide trigger transients of Ca2+ in single pancreatic beta-cells exposed to tetraethylammonium.
    Eberhardson M; Grapengiesser E
    Cell Calcium; 1999 May; 25(5):355-60. PubMed ID: 10463099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of glucose-induced Ca2+ transients in pancreatic beta-cells by a diffusible factor.
    Grapengiesser E; Gylfe E; Hellman B
    Biochem Biophys Res Commun; 1999 Jan; 254(2):436-9. PubMed ID: 9918856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purinergic modulation of pacemaker Ca2+ activity in interstitial cells of Cajal.
    Furuzono S; Nakayama S; Imaizumi Y
    Neuropharmacology; 2005 Feb; 48(2):264-73. PubMed ID: 15695165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca(2+) oscillations.
    Grapengiesser E; Dansk H; Hellman B
    Biochem Pharmacol; 2004 Aug; 68(4):667-74. PubMed ID: 15276074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells.
    Kawano S; Otsu K; Kuruma A; Shoji S; Yanagida E; Muto Y; Yoshikawa F; Hirayama Y; Mikoshiba K; Furuichi T
    Cell Calcium; 2006 Apr; 39(4):313-24. PubMed ID: 16445977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular ATP activates ERK1/ERK2 via a metabotropic P2Y1 receptor in a Ca2+ independent manner in differentiated human skeletal muscle cells.
    May C; Weigl L; Karel A; Hohenegger M
    Biochem Pharmacol; 2006 May; 71(10):1497-509. PubMed ID: 16533496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta.
    Choi YM; Jang JY; Jang M; Kim SH; Kang YK; Cho H; Chung S; Park MK
    Neuroscience; 2009 May; 160(3):587-95. PubMed ID: 19272429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purinergic actions on neurons that modulate nociception in the rostral ventromedial medulla.
    Selden NR; Carlson JD; Cetas J; Close LN; Heinricher MM
    Neuroscience; 2007 Jun; 146(4):1808-16. PubMed ID: 17481825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-induced Ca2+ release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic beta-cells.
    Dyachok O; Tufveson G; Gylfe E
    Cell Calcium; 2004 Jul; 36(1):1-9. PubMed ID: 15126051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of pancreatic beta-cell rhythmicity after glucagon induction of Ca2+ transients.
    Grapengiesser E; Dansk H; Hellman B
    Cell Calcium; 2003 Jul; 34(1):49-53. PubMed ID: 12767892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-dependent mechanism for coordination of intercellular Ca2+ signaling and renin secretion in rat juxtaglomerular cells.
    Yao J; Suwa M; Li B; Kawamura K; Morioka T; Oite T
    Circ Res; 2003 Aug; 93(4):338-45. PubMed ID: 12869388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-micromolar increase in [Ca(2+)](i) triggers delayed exocytosis of ATP in cultured astrocytes.
    Pryazhnikov E; Khiroug L
    Glia; 2008 Jan; 56(1):38-49. PubMed ID: 17910050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiation of ATP-induced Ca2+ mobilisation in human retinal pigment epithelial cells.
    Collison DJ; Tovell VE; Coombes LJ; Duncan G; Sanderson J
    Exp Eye Res; 2005 Apr; 80(4):465-75. PubMed ID: 15781274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective stimulation of catecholamine release from bovine adrenal chromaffin cells by an ionotropic purinergic receptor sensitive to 2-methylthio ATP.
    Tomé AR; Castro E; Santos RM; Rosário LM
    BMC Neurosci; 2007 Jun; 8():41. PubMed ID: 17584495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.