These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

618 related articles for article (PubMed ID: 14722062)

  • 21. Dynamic, semi-quantitative imaging of intracellular ROS levels and redox status in rat hippocampal neurons.
    Funke F; Gerich FJ; Müller M
    Neuroimage; 2011 Feb; 54(4):2590-602. PubMed ID: 21081169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
    Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ
    J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a high-dynamic range, GFP-based FRET probe sensitive to oxidative microenvironments.
    Kolossov VL; Spring BQ; Clegg RM; Henry JJ; Sokolowski A; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2011 Jun; 236(6):681-91. PubMed ID: 21606117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology.
    Wagener KC; Kolbrink B; Dietrich K; Kizina KM; Terwitte LS; Kempkes B; Bao G; Müller M
    Antioxid Redox Signal; 2016 Jul; 25(1):41-58. PubMed ID: 27059697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring intracellular redox conditions using GFP-based sensors.
    Björnberg O; Ostergaard H; Winther JR
    Antioxid Redox Signal; 2006; 8(3-4):354-61. PubMed ID: 16677081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator.
    Katsalifis A; Casaril AM; Depp C; Bas-Orth C
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34747400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings.
    Aller I; Rouhier N; Meyer AJ
    Front Plant Sci; 2013; 4():506. PubMed ID: 24379821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time monitoring of redox changes in the mammalian endoplasmic reticulum.
    van Lith M; Tiwari S; Pediani J; Milligan G; Bulleid NJ
    J Cell Sci; 2011 Jul; 124(Pt 14):2349-56. PubMed ID: 21693587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization.
    Madesh M; Antonsson B; Srinivasula SM; Alnemri ES; Hajnóczky G
    J Biol Chem; 2002 Feb; 277(7):5651-9. PubMed ID: 11741882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring intracellular redox conditions in the endoplasmic reticulum of living yeasts.
    Delic M; Mattanovich D; Gasser B
    FEMS Microbiol Lett; 2010 May; 306(1):61-6. PubMed ID: 20337710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New red-shifted fluorescent biosensor for monitoring intracellular redox changes.
    Piattoni CV; Sardi F; Klein F; Pantano S; Bollati-Fogolin M; Comini M
    Free Radic Biol Med; 2019 Apr; 134():545-554. PubMed ID: 30735840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2.
    Gladyshev VN; Liu A; Novoselov SV; Krysan K; Sun QA; Kryukov VM; Kryukov GV; Lou MF
    J Biol Chem; 2001 Aug; 276(32):30374-80. PubMed ID: 11397793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells.
    Vevea JD; Alessi Wolken DM; Swayne TC; White AB; Pon LA
    J Vis Exp; 2013 Jul; (77):50633. PubMed ID: 23912244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
    Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R
    Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring redox dynamics in living cells with a redox-sensitive red fluorescent protein.
    Fan Y; Chen Z; Ai HW
    Anal Chem; 2015 Mar; 87(5):2802-10. PubMed ID: 25666702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells.
    Rizzuto R; Brini M; Pizzo P; Murgia M; Pozzan T
    Curr Biol; 1995 Jun; 5(6):635-42. PubMed ID: 7552174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1.
    Frieden M; James D; Castelbou C; Danckaert A; Martinou JC; Demaurex N
    J Biol Chem; 2004 May; 279(21):22704-14. PubMed ID: 15024001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response properties of the genetically encoded optical H2O2 sensor HyPer.
    Weller J; Kizina KM; Can K; Bao G; Müller M
    Free Radic Biol Med; 2014 Nov; 76():227-41. PubMed ID: 25179473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent protein-based redox probes.
    Meyer AJ; Dick TP
    Antioxid Redox Signal; 2010 Sep; 13(5):621-50. PubMed ID: 20088706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for redox forms of the Aequorea green fluorescent protein.
    Inouye S; Tsuji FI
    FEBS Lett; 1994 Sep; 351(2):211-4. PubMed ID: 8082767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.