These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
619 related articles for article (PubMed ID: 14722062)
41. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes. Lismont C; Walton PA; Fransen M Methods Mol Biol; 2017; 1595():151-164. PubMed ID: 28409459 [TBL] [Abstract][Full Text] [Related]
42. Dynamic redox measurements with redox-sensitive GFP in plants by confocal laser scanning microscopy. Meyer AJ; Brach T Methods Mol Biol; 2009; 479():93-107. PubMed ID: 19083173 [TBL] [Abstract][Full Text] [Related]
43. Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. Jeong W; Yoon HW; Lee SR; Rhee SG J Biol Chem; 2004 Jan; 279(5):3142-50. PubMed ID: 14607844 [TBL] [Abstract][Full Text] [Related]
44. Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis. Patenaude A; Ven Murthy MR; Mirault ME J Biol Chem; 2004 Jun; 279(26):27302-14. PubMed ID: 15082714 [TBL] [Abstract][Full Text] [Related]
45. Crystal structure of human SCO1: implications for redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein. Williams JC; Sue C; Banting GS; Yang H; Glerum DM; Hendrickson WA; Schon EA J Biol Chem; 2005 Apr; 280(15):15202-11. PubMed ID: 15659396 [TBL] [Abstract][Full Text] [Related]
46. New light on mitochondrial calcium. Pinton P; Brini M; Bastianutto C; Tuft RA; Pozzan T; Rizzuto R Biofactors; 1998; 8(3-4):243-53. PubMed ID: 9914826 [TBL] [Abstract][Full Text] [Related]
47. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion. Yin B; Barrionuevo G; Weber SG ACS Chem Neurosci; 2015 Nov; 6(11):1838-48. PubMed ID: 26291433 [TBL] [Abstract][Full Text] [Related]
48. Measuring redox changes in vivo in leaves: prospects and technical challenges. Mullineaux PM; Lawson T Methods Mol Biol; 2008; 476():67-77. PubMed ID: 19157009 [TBL] [Abstract][Full Text] [Related]
49. Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu. Hansen RE; Østergaard H; Winther JR Biochemistry; 2005 Apr; 44(15):5899-906. PubMed ID: 15823049 [TBL] [Abstract][Full Text] [Related]
50. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Wachter RM; Elsliger MA; Kallio K; Hanson GT; Remington SJ Structure; 1998 Oct; 6(10):1267-77. PubMed ID: 9782051 [TBL] [Abstract][Full Text] [Related]
51. Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer. McAnaney TB; Shi X; Abbyad P; Jung H; Remington SJ; Boxer SG Biochemistry; 2005 Jun; 44(24):8701-11. PubMed ID: 15952777 [TBL] [Abstract][Full Text] [Related]
52. Assessment of Cellular Oxidation using a Subcellular Compartment-Specific Redox-Sensitive Green Fluorescent Protein. Tascioglu Aliyev A; LoBianco F; Krager KJ; Aykin-Burns N J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628158 [TBL] [Abstract][Full Text] [Related]
53. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. Goulding CW; Apostol MI; Gleiter S; Parseghian A; Bardwell J; Gennaro M; Eisenberg D J Biol Chem; 2004 Jan; 279(5):3516-24. PubMed ID: 14597624 [TBL] [Abstract][Full Text] [Related]
54. A high-throughput real-time in vitro assay using mitochondrial targeted roGFP for screening of drugs targeting mitochondria. Chandrasekharan A; Varadarajan SN; Lekshmi A; Lupitha SS; Darvin P; Chandrasekhar L; Pillai PR; Santhoshkumar TR; Pillai MR Redox Biol; 2019 Jan; 20():379-389. PubMed ID: 30408753 [TBL] [Abstract][Full Text] [Related]
55. Astaxanthin protects mitochondrial redox state and functional integrity against oxidative stress. Wolf AM; Asoh S; Hiranuma H; Ohsawa I; Iio K; Satou A; Ishikura M; Ohta S J Nutr Biochem; 2010 May; 21(5):381-9. PubMed ID: 19423317 [TBL] [Abstract][Full Text] [Related]
56. Oxidation-reduction properties of two engineered redox-sensitive mutant Escherichia coli malate dehydrogenases. Setterdahl A; Hirasawa M; Bucher LM; Dholakia CA; Jacquot P; Yards H; Miller F; Stevens FJ; Knaff DB; Anderson LE Arch Biochem Biophys; 2000 Oct; 382(1):15-21. PubMed ID: 11051092 [TBL] [Abstract][Full Text] [Related]
57. A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Arias-Barreiro CR; Okazaki K; Koutsaftis A; Inayat-Hussain SH; Tani A; Katsuhara M; Kimbara K; Mori IC Sensors (Basel); 2010; 10(7):6290-6306. PubMed ID: 22163550 [TBL] [Abstract][Full Text] [Related]
58. A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. Karasawa S; Araki T; Yamamoto-Hino M; Miyawaki A J Biol Chem; 2003 Sep; 278(36):34167-71. PubMed ID: 12819206 [TBL] [Abstract][Full Text] [Related]
59. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
60. A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Rosenwasser S; Rot I; Meyer AJ; Feldman L; Jiang K; Friedman H Physiol Plant; 2010 Apr; 138(4):493-502. PubMed ID: 20051029 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]