These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14723162)

  • 1. [Methods for estimation of microbe resistance of protective coatings].
    Zanina VV; Kopteva ZhP; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2003; 65(5):41-5. PubMed ID: 14723162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Lipolytic and catalase activity of bacteria-destructors of protective coatings].
    Kopteva ZhP; Zanina VV; Kopteva AE; Aĭzenberg VL; Borisenko AV
    Mikrobiol Z; 2009; 71(4):45-50. PubMed ID: 19938616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Formation of microbial populations on the surface of protective coatings].
    Kopteva ZhP; Zanina VV; Piliashenko-Novokhatnyĭ AI; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2001; 63(2):3-9. PubMed ID: 11558243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Monosaccharide composition of exopolymer complex of bacteria-destructors of protective coatings].
    Zanina VV; Kopteva ZhP; Iumyna IuM; Ostapchuk AN
    Mikrobiol Z; 2009; 71(4):21-7. PubMed ID: 19938612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Extracellular metabolites of hydrocarbon-oxidizing bacteria as a substrate for sulfate reduction].
    Koronelli TV; Komarova TI; Porshneva OV; Tkebuchava LF
    Prikl Biokhim Mikrobiol; 2001; 37(5):549-53. PubMed ID: 11605466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dynamics of microbial populations in the biofilm on protective coating].
    Iumyna IuM; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2009; 71(3):37-41. PubMed ID: 19938604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Storage of hydrocarbon-degrading bacteria].
    Bade GM; Vecchioli GI; del Panno MT; Painceira MT
    Rev Argent Microbiol; 1994; 26(3):116-23. PubMed ID: 7838975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank.
    Cápiro NL; Da Silva ML; Stafford BP; Rixey WG; Alvarez PJ
    Environ Microbiol; 2008 Sep; 10(9):2236-44. PubMed ID: 18484998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection].
    Kopteva ZhP; Zanina VV; Purish LM; Piliashenko-Novokhatnyĭ AI; Kozlova IA
    Mikrobiol Z; 2004; 66(5):68-75. PubMed ID: 15554300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Purification of soil from oil pollutants with the use of denitrifying hydrocarbon-oxidizing microorganisms].
    Rakhimova ER; Osipova AL; Zaripova SK
    Prikl Biokhim Mikrobiol; 2004; 40(6):649-53. PubMed ID: 15609855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of hydrocarbon contamination by immobilized bacterial cells.
    Rahman RN; Ghaza FM; Salleh AB; Basri M
    J Microbiol; 2006 Jun; 44(3):354-9. PubMed ID: 16820766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of space flight conditions on properties of hydrocarbon-oxidizing bacteria].
    Ermolenko ZM; Martovetskaia VA; Chugunov VA; Kholodenko VP
    Prikl Biokhim Mikrobiol; 2000; 36(6):647-51. PubMed ID: 11116907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of pure cultures of hydrogen-oxidizing denitrifying bacteria and modeling of the interactions among them in mixed cultures.
    Vasiliadou IA; Siozios S; Papadas IT; Bourtzis K; Pavlou S; Vayenas DV
    Biotechnol Bioeng; 2006 Oct; 95(3):513-25. PubMed ID: 16758460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins.
    Kaczorek E; Chrzanowski L; Pijanowska A; Olszanowski A
    Bioresour Technol; 2008 Jul; 99(10):4285-91. PubMed ID: 17959375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence and biodegradation of kerosene in high-arctic intertidal sediment.
    Røberg S; Stormo SK; Landfald B
    Mar Environ Res; 2007 Oct; 64(4):417-28. PubMed ID: 17493677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.