BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1472380)

  • 21. Recognition of double-stranded RNA by proteins and small molecules.
    Carlson CB; Stephens OM; Beal PA
    Biopolymers; 2003 Sep; 70(1):86-102. PubMed ID: 12925995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antisense peptide interactions studied by electrospray ionization mass spectrometry.
    Madhusudanan KP; Katti SB; Haq W; Misra PK
    J Mass Spectrom; 2000 Feb; 35(2):237-41. PubMed ID: 10679986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the sites of interaction between c-Raf-1 and Ras-GTP.
    Barnard D; Diaz B; Hettich L; Chuang E; Zhang XF; Avruch J; Marshall M
    Oncogene; 1995 Apr; 10(7):1283-90. PubMed ID: 7731678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA.
    Sugaya M; Nishino N; Katoh A; Harada K
    J Pept Sci; 2008 Aug; 14(8):924-35. PubMed ID: 18351707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A bivalent dissectional analysis of the high-affinity interactions between Cdc42 and the Cdc42/Rac interactive binding domains of signaling kinases in Candida albicans.
    Su Z; Osborne MJ; Xu P; Xu X; Li Y; Ni F
    Biochemistry; 2005 Dec; 44(50):16461-74. PubMed ID: 16342938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. raf RBD and ubiquitin proteins share similar folds, folding rates and mechanisms despite having unrelated amino acid sequences.
    Vallée-Bélisle A; Turcotte JF; Michnick SW
    Biochemistry; 2004 Jul; 43(26):8447-58. PubMed ID: 15222756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides.
    Wiedemann U; Boisguerin P; Leben R; Leitner D; Krause G; Moelling K; Volkmer-Engert R; Oschkinat H
    J Mol Biol; 2004 Oct; 343(3):703-18. PubMed ID: 15465056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.
    Kato R; Kaga C; Kunimatsu M; Kobayashi T; Honda H
    J Biosci Bioeng; 2006 Jun; 101(6):485-95. PubMed ID: 16935250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrophobic interactions and the design of receptor mimetic peptides.
    Martin-Moe SA; Lehr R; Cauley MD; Moe GR
    Pept Res; 1995; 8(2):70-6. PubMed ID: 7544657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sense-antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science.
    Miller AD
    Expert Opin Biol Ther; 2015 Feb; 15(2):245-67. PubMed ID: 25584818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the preferred solution conformation of an interacting sense-antisense (complementary) peptide pair.
    Pullen JR; Dalmaris J; Serapian SA; Miller AD
    Bioorg Med Chem Lett; 2013 Jan; 23(2):496-502. PubMed ID: 23245517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the degeneracy of antisense peptides using affinity chromatography.
    Zhao R; Yu X; Liu H; Zhai L; Xiong S; Su T; Liu G
    J Chromatogr A; 2001 Apr; 913(1-2):421-8. PubMed ID: 11355840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Anti-sense peptide].
    Ding JF; Tang J
    Sheng Li Ke Xue Jin Zhan; 1992 Oct; 23(4):355-6. PubMed ID: 1302368
    [No Abstract]   [Full Text] [Related]  

  • 35. Anti-sense peptide recognition of sense peptides: direct quantitative characterization with the ribonuclease S-peptide system using analytical high-performance affinity chromatography.
    Shai Y; Flashner M; Chaiken IM
    Biochemistry; 1987 Feb; 26(3):669-75. PubMed ID: 3567139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic investigation into complementary (antisense) peptide mini-receptor inhibitors of cytokine interleukin-1.
    Hea JR; Bino S; Roberts GW; Raynes JG; Miller AD
    Chembiochem; 2002 Jan; 3(1):76-85. PubMed ID: 17590957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic disorder in protein sense-antisense recognition.
    Dayhoff GW; van Regenmortel MHV; Uversky VN
    J Mol Recognit; 2020 Oct; 33(10):e2868. PubMed ID: 32573020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antisense peptides: tools for receptor isolation? Lack of antisense MSH and ACTH to interact with their sense peptides and to induce receptor-specific antibodies.
    Eberle AN; Huber M
    J Recept Res; 1991; 11(1-4):13-43. PubMed ID: 1653331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition.
    Yu H; Zhou P; Deng M; Shang Z
    J Chem Inf Model; 2014 Jul; 54(7):2022-32. PubMed ID: 24999015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognition properties of peptides hydropathically complementary to residues 356-375 of the c-raf protein.
    Fassina G; Roller PP; Olson AD; Thorgeirsson SS; Omichinski JG
    J Biol Chem; 1989 Jul; 264(19):11252-7. PubMed ID: 2472393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.