BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 14723918)

  • 1. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.
    Gaiser EE; Scinto LJ; Richards JH; Jayachandran K; Childers DL; Trexler JC; Jones RD
    Water Res; 2004 Feb; 38(3):507-16. PubMed ID: 14723918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural instability, multiple stable states, and hysteresis in periphyton driven by phosphorus enrichment in the Everglades.
    Dong Q; McCormick PV; Sklar FH; DeAngelis DL
    Theor Popul Biol; 2002 Feb; 61(1):1-13. PubMed ID: 11895379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoplankton, pelagic community and nutrients in a deep oligotrophic alpine lake: ratios as sensitive indicators of the use of P-resources (DRP:DOP:PP and TN:TP:SRSi).
    Teubner K
    Water Res; 2003 Apr; 37(7):1583-92. PubMed ID: 12600386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulolytic, fermentative, and methanogenic guilds in benthic periphyton mats from the Florida Everglades.
    Uz I; Chauhan A; Ogram AV
    FEMS Microbiol Ecol; 2007 Aug; 61(2):337-47. PubMed ID: 17651137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial variations of nutrients in the Ten Mile Creek of South Florida, USA and effects on phytoplankton biomass.
    Yang Y; He Z; Lin Y; Phlips EJ; Yang J; Chen G; Stoffella PJ; Powell CA
    J Environ Monit; 2008 Apr; 10(4):508-16. PubMed ID: 18385872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eutrophication conditions and ecological status in typical bays of Lake Taihu in China.
    Ye C; Xu Q; Kong H; Shen Z; Yan C
    Environ Monit Assess; 2007 Dec; 135(1-3):217-25. PubMed ID: 17345009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascading ecological effects of low-level phosphorus enrichment in the Florida everglades.
    Gaiser EE; Trexler JC; Richards JH; Childers DL; Lee D; Edwards AL; Scinto LJ; Jayachandran K; Noe GB; Jones RD
    J Environ Qual; 2005; 34(2):717-23. PubMed ID: 15758124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem.
    Daoust RJ; Childers DL
    Oecologia; 2004 Dec; 141(4):672-86. PubMed ID: 15365807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil profile distribution of phosphorus and other nutrients following wetland conversion to beef cattle pasture.
    Sigua GC; Kang WJ; Coleman SW
    J Environ Qual; 2006; 35(6):2374-82. PubMed ID: 17071908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of indices to predict phosphorus release from wetland soils.
    Mukherjee A; Nair VD; Clark MW; Reddy KR
    J Environ Qual; 2009; 38(3):878-86. PubMed ID: 19329676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).
    Wang GP; Liu JS; Tang J
    Water Res; 2004 Dec; 38(20):4462-74. PubMed ID: 15556221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recording the occurrence of trophic level changes in the lagoon of Venice over the '90s.
    Sfriso A; Facca C; Ceoldo S; Marcomini A
    Environ Int; 2005 Sep; 31(7):993-1001. PubMed ID: 16014311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nutrient loading budget for Biscayne Bay, Florida.
    Caccia VG; Boyer JN
    Mar Pollut Bull; 2007 Jul; 54(7):994-1008. PubMed ID: 17418240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term relationship between phosphorus inputs and wetland phosphorus concentrations in a northern Everglades marsh.
    Smith EP; McCormick PV
    Environ Monit Assess; 2001 May; 68(2):153-76. PubMed ID: 11411142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water, vegetation and sediment gradients in submerged aquatic vegetation mesocosms used for low-level phosphorus removal.
    DeBusk TA; Kharbanda M; Jackson SD; Grace KA; Hileman K; Dierberg FE
    Sci Total Environ; 2011 Nov; 409(23):5046-56. PubMed ID: 21925712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus retention in small constructed wetlands treating agricultural drainage water.
    Reinhardt M; Gächter R; Wehrli B; Müller B
    J Environ Qual; 2005; 34(4):1251-9. PubMed ID: 15942044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M; Woolley A
    Water Sci Technol; 2001; 44(11-12):303-10. PubMed ID: 11804111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape.
    Childers DL; Doren RF; Jones R; Noe GB; Rugge M; Scinto LJ
    J Environ Qual; 2003; 32(1):344-62. PubMed ID: 12549575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.